1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
//! Simple provider of simulated time
//!
//! See [`SimpleMockTimeProvider`]
use std::cmp::Reverse;
use std::future::Future;
use std::pin::Pin;
use std::sync::{Arc, Mutex, MutexGuard};
use std::task::{Context, Poll, Waker};
use std::time::{Duration, Instant, SystemTime};
use derive_more::AsMut;
use priority_queue::priority_queue::PriorityQueue;
use slotmap::DenseSlotMap;
use tor_rtcompat::CoarseInstant;
use tor_rtcompat::CoarseTimeProvider;
use tor_rtcompat::SleepProvider;
use crate::time_core::MockTimeCore;
/// Simple provider of simulated time
///
/// Maintains a mocked view of the current [`Instant`] and [`SystemTime`].
///
/// The simulated time advances only when explicitly instructed,
/// by calling [`.advance()`](Provider::advance).
///
/// The wallclock time can be warped with
/// [`.jump_wallclock()`](Provider::jump_wallclock),
/// allowing simulation of wall clock non-monotonicity.
///
/// # Panics and aborts
///
/// Panics on time under/overflow.
///
/// May cause an abort if the [`SimpleMockTimeProvider`] implementation contains bugs.
#[derive(Clone, Debug)]
pub struct SimpleMockTimeProvider {
/// The actual state
state: Arc<Mutex<State>>,
}
/// Convenience abbreviation
pub(crate) use SimpleMockTimeProvider as Provider;
/// Identifier of a [`SleepFuture`]
type Id = slotmap::DefaultKey;
/// Future for `sleep`
///
/// Iff this struct exists, there is an entry for `id` in `prov.futures`.
/// (It might contain `None`.)
pub struct SleepFuture {
/// Reference to our state
prov: Provider,
/// Which `SleepFuture` are we
id: Id,
}
/// Mutable state for a [`Provider`]
///
/// Each sleep ([`Id`], [`SleepFuture`]) is in one of the following states:
///
/// | state | [`SleepFuture`] | `futures` | `unready` |
/// |-------------|------------------|------------------|--------------------|
/// | UNPOLLLED | exists | present, `None` | present, `> now` |
/// | WAITING | exists | present, `Some` | present, `> now` |
/// | READY | exists | present, `None` | absent |
/// | DROPPED | dropped | absent | absent |
#[derive(Debug, AsMut)]
struct State {
/// Current time (coarse)
core: MockTimeCore,
/// Futures; record of every existing [`SleepFuture`], including any `Waker`
///
/// Entry exists iff `SleepFuture` exists.
///
/// Contains `None` if we haven't polled the future;
/// `Some` if we have.
///
/// We could use a `Vec` or `TiVec`
/// but using a slotmap is more robust against bugs here.
futures: DenseSlotMap<Id, Option<Waker>>,
/// Priority queue
///
/// Subset of `futures`.
///
/// An entry is present iff the `Instant` is *strictly* after `State.now`,
/// in which case that's when the future should be woken.
///
/// `PriorityQueue` is a max-heap but we want earliest times, hence `Reverse`
unready: PriorityQueue<Id, Reverse<Instant>>,
}
/// `Default` makes a `Provider` which starts at whatever the current real time is
impl Default for Provider {
fn default() -> Self {
Self::from_real()
}
}
impl Provider {
/// Return a new mock time provider starting at a specified point in time
pub fn new(now: Instant, wallclock: SystemTime) -> Self {
let state = State {
core: MockTimeCore::new(now, wallclock),
futures: Default::default(),
unready: Default::default(),
};
Provider {
state: Arc::new(Mutex::new(state)),
}
}
/// Return a new mock time provider starting at the current actual (non-mock) time
///
/// Like any [`SimpleMockTimeProvider`], the time is frozen and only changes
/// due to calls to `advance`.
pub fn from_real() -> Self {
Provider::from_wallclock(SystemTime::now())
}
/// Return a new mock time provider starting at a specified wallclock time
///
/// The monotonic time ([`Instant`]) starts at the current actual (non-mock) time.
/// (Absolute values of the real monotonic time are not readily
/// observable or distinguishable from Rust,
/// nor can a fixed `Instant` be constructed,
/// so this is usually sufficient for a reproducible test.)
pub fn from_wallclock(wallclock: SystemTime) -> Self {
Provider::new(Instant::now(), wallclock)
}
/// Advance the simulated time by `d`
///
/// This advances both the `Instant` (monotonic time)
/// and `SystemTime` (wallclock time)
/// by the same amount.
///
/// Will wake sleeping [`SleepFuture`]s, as appropriate.
///
/// Note that the tasks which were waiting on those now-expired `SleepFuture`s
/// will only actually execute when they are next polled.
/// `advance` does not yield to the executor or poll any futures.
/// The executor will (presumably) poll those woken tasks, when it regains control.
/// But the order in which the tasks run will depend on its scheduling policy,
/// and might be different to the order implied by the futures' timeout values.
///
/// To simulate normal time advancement, wakeups, and task activations,
/// use [`MockExecutor::advance_*()`](crate::MockRuntime).
pub fn advance(&self, d: Duration) {
let mut state = self.lock();
state.core.advance(d);
state.wake_any();
}
/// Warp the wallclock time
///
/// This has no effect on any sleeping futures.
/// It only affects the return value from [`.wallclock()`](Provider::wallclock).
pub fn jump_wallclock(&self, new_wallclock: SystemTime) {
self.lock().core.jump_wallclock(new_wallclock);
// Really we ought to wake people up, here.
// But absolutely every Rust API is wrong: none offer a way to sleep until a SystemTime.
// (There might be some less-portable non-Rust APIs for that.)
}
/// When will the next timeout occur?
///
/// Returns the duration until the next [`SleepFuture`] should wake up.
///
/// Advancing time by at least this amount will wake up that future,
/// and any others with the same wakeup time.
///
/// Will never return `Some(ZERO)`:
/// any future that is supposed to wake up now (or earlier) has indeed already been woken,
/// so it is no longer sleeping and isn't included in the calculation.
pub fn time_until_next_timeout(&self) -> Option<Duration> {
let state = self.lock();
let Reverse(until) = state.unready.peek()?.1;
// The invariant (see `State`) guarantees that entries in `unready` are always `> now`,
// so we don't whether duration_since would panic or saturate.
let d = until.duration_since(state.core.instant());
Some(d)
}
/// Convenience function to lock the state
fn lock(&self) -> MutexGuard<'_, State> {
self.state.lock().expect("simple time state poisoned")
}
}
impl SleepProvider for Provider {
type SleepFuture = SleepFuture;
fn sleep(&self, d: Duration) -> SleepFuture {
let mut state = self.lock();
let until = state.core.instant() + d;
let id = state.futures.insert(None);
state.unready.push(id, Reverse(until));
let fut = SleepFuture {
id,
prov: self.clone(),
};
// This sleep is now UNPOLLLED, except that its time might be `<= now`:
// Possibly, `until` isn't *strictly* after than `state.now`, since d might be 0.
// If so, .wake_any() will restore the invariant by immediately waking.
state.wake_any();
// This sleep is now UNPOLLED or READY, according to whether duration was 0.
fut
}
fn now(&self) -> Instant {
self.lock().core.instant()
}
fn wallclock(&self) -> SystemTime {
self.lock().core.wallclock()
}
}
impl CoarseTimeProvider for Provider {
fn now_coarse(&self) -> CoarseInstant {
self.lock().core.coarse().now_coarse()
}
}
impl Future for SleepFuture {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
let mut state = self.prov.lock();
if let Some((_, Reverse(scheduled))) = state.unready.get(&self.id) {
// Presence of this entry implies scheduled > now: we are UNPOLLED or WAITING
assert!(*scheduled > state.core.instant());
let waker = Some(cx.waker().clone());
// Make this be WAITING. (If we're re-polled, we simply drop any previous waker.)
*state
.futures
.get_mut(self.id)
.expect("polling futures entry") = waker;
Poll::Pending
} else {
// Absence implies scheduled (no longer stored) <= now: we are READY
Poll::Ready(())
}
}
}
impl State {
/// Restore the invariant for `unready` after `now` has been increased
///
/// Ie, ensures that any sleeps which are
/// WAITING/UNPOLLED except that they are `<= now`,
/// are moved to state READY.
fn wake_any(&mut self) {
loop {
match self.unready.peek() {
// Keep picking off entries with scheduled <= now
Some((_, Reverse(scheduled))) if *scheduled <= self.core.instant() => {
let (id, _) = self.unready.pop().expect("vanished");
// We can .take() the waker since this can only ever run once
// per sleep future (since it happens when we pop it from unready).
let futures_entry = self.futures.get_mut(id).expect("stale unready entry");
if let Some(waker) = futures_entry.take() {
waker.wake();
}
}
_ => break,
}
}
}
}
impl Drop for SleepFuture {
fn drop(&mut self) {
let mut state = self.prov.lock();
let _: Option<Waker> = state.futures.remove(self.id).expect("entry vanished");
let _: Option<(Id, Reverse<Instant>)> = state.unready.remove(&self.id);
// Now it is DROPPED.
}
}
#[cfg(test)]
mod test {
// @@ begin test lint list maintained by maint/add_warning @@
#![allow(clippy::bool_assert_comparison)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::dbg_macro)]
#![allow(clippy::mixed_attributes_style)]
#![allow(clippy::print_stderr)]
#![allow(clippy::print_stdout)]
#![allow(clippy::single_char_pattern)]
#![allow(clippy::unwrap_used)]
#![allow(clippy::unchecked_duration_subtraction)]
#![allow(clippy::useless_vec)]
#![allow(clippy::needless_pass_by_value)]
//! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
use super::*;
use crate::task::MockExecutor;
use futures::poll;
use humantime::parse_rfc3339;
use tor_rtcompat::BlockOn as _;
use Poll::*;
fn ms(ms: u64) -> Duration {
Duration::from_millis(ms)
}
fn run_test<FUT>(f: impl FnOnce(Provider, MockExecutor) -> FUT)
where
FUT: Future<Output = ()>,
{
let sp = Provider::new(
Instant::now(), // it would have been nice to make this fixed for the test
parse_rfc3339("2000-01-01T00:00:00Z").unwrap(),
);
let exec = MockExecutor::new();
exec.block_on(f(sp, exec.clone()));
}
#[test]
fn simple() {
run_test(|sp, _exec| async move {
let n1 = sp.now();
let w1 = sp.wallclock();
let mut f1 = sp.sleep(ms(500));
let mut f2 = sp.sleep(ms(1500));
assert_eq!(poll!(&mut f1), Pending);
sp.advance(ms(200));
assert_eq!(n1 + ms(200), sp.now());
assert_eq!(w1 + ms(200), sp.wallclock());
assert_eq!(poll!(&mut f1), Pending);
assert_eq!(poll!(&mut f2), Pending);
drop(f2);
sp.jump_wallclock(w1 + ms(10_000));
sp.advance(ms(300));
assert_eq!(n1 + ms(500), sp.now());
assert_eq!(w1 + ms(10_300), sp.wallclock());
assert_eq!(poll!(&mut f1), Ready(()));
let mut f0 = sp.sleep(ms(0));
assert_eq!(poll!(&mut f0), Ready(()));
});
}
#[test]
fn task() {
run_test(|sp, exec| async move {
let st = Arc::new(Mutex::new(0_i8));
exec.spawn_identified("test task", {
let st = st.clone();
let sp = sp.clone();
async move {
*st.lock().unwrap() = 1;
sp.sleep(ms(500)).await;
*st.lock().unwrap() = 2;
sp.sleep(ms(300)).await;
*st.lock().unwrap() = 3;
}
});
let st = move || *st.lock().unwrap();
assert_eq!(st(), 0);
exec.progress_until_stalled().await;
assert_eq!(st(), 1);
assert_eq!(sp.time_until_next_timeout(), Some(ms(500)));
sp.advance(ms(500));
assert_eq!(st(), 1);
assert_eq!(sp.time_until_next_timeout(), None);
exec.progress_until_stalled().await;
assert_eq!(st(), 2);
assert_eq!(sp.time_until_next_timeout(), Some(ms(300)));
sp.advance(ms(500));
assert_eq!(st(), 2);
assert_eq!(sp.time_until_next_timeout(), None);
exec.progress_until_stalled().await;
assert_eq!(sp.time_until_next_timeout(), None);
assert_eq!(st(), 3);
});
}
}