1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
//! Multi-hop paths over the Tor network.
//!
//! Right now, we only implement "client circuits" -- also sometimes
//! called "origin circuits".  A client circuit is one that is
//! constructed by this Tor instance, and used in its own behalf to
//! send data over the Tor network.
//!
//! Each circuit has multiple hops over the Tor network: each hop
//! knows only the hop before and the hop after.  The client shares a
//! separate set of keys with each hop.
//!
//! To build a circuit, first create a [crate::channel::Channel], then
//! call its [crate::channel::Channel::new_circ] method.  This yields
//! a [PendingClientCirc] object that won't become live until you call
//! one of the methods that extends it to its first hop.  After you've
//! done that, you can call [ClientCirc::extend_ntor] on the circuit to
//! build it into a multi-hop circuit.  Finally, you can use
//! [ClientCirc::begin_stream] to get a Stream object that can be used
//! for anonymized data.
//!
//! # Implementation
//!
//! Each open circuit has a corresponding Reactor object that runs in
//! an asynchronous task, and manages incoming cells from the
//! circuit's upstream channel.  These cells are either RELAY cells or
//! DESTROY cells.  DESTROY cells are handled immediately.
//! RELAY cells are either for a particular stream, in which case they
//! get forwarded to a RawCellStream object, or for no particular stream,
//! in which case they are considered "meta" cells (like EXTENDED2)
//! that should only get accepted if something is waiting for them.
//!
//! # Limitations
//!
//! This is client-only.
//!
//! There's one big mutex on the whole circuit: the reactor needs to hold
//! it to process a cell, and streams need to hold it to send.
//!
//! There is no flow-control or rate-limiting or fairness.

pub(crate) mod celltypes;
pub(crate) mod halfcirc;
mod halfstream;
#[cfg(feature = "hs-common")]
pub mod handshake;
#[cfg(feature = "send-control-msg")]
mod msghandler;
mod path;
pub(crate) mod reactor;
pub(crate) mod sendme;
mod streammap;
mod unique_id;

use crate::channel::Channel;
use crate::circuit::celltypes::*;
use crate::circuit::reactor::{
    CircuitHandshake, CtrlMsg, Reactor, RECV_WINDOW_INIT, STREAM_READER_BUFFER,
};
pub use crate::circuit::unique_id::UniqId;
use crate::crypto::cell::HopNum;
use crate::stream::{
    AnyCmdChecker, DataCmdChecker, DataStream, ResolveCmdChecker, ResolveStream, StreamParameters,
    StreamReader,
};
use crate::{Error, ResolveError, Result};
use tor_cell::{
    chancell::{self, msg::AnyChanMsg, CircId},
    relaycell::msg::{AnyRelayMsg, Begin, Resolve, Resolved, ResolvedVal},
};

use tor_error::{bad_api_usage, internal, into_internal};
use tor_linkspec::{CircTarget, LinkSpecType, OwnedChanTarget, RelayIdType};

use futures::channel::{mpsc, oneshot};

use crate::circuit::sendme::StreamRecvWindow;
use futures::SinkExt;
use std::net::IpAddr;
use std::sync::{Arc, Mutex};
use tor_cell::relaycell::StreamId;
// use std::time::Duration;

use crate::crypto::handshake::ntor::NtorPublicKey;
pub use path::{Path, PathEntry};

/// The size of the buffer for communication between `ClientCirc` and its reactor.
pub const CIRCUIT_BUFFER_SIZE: usize = 128;

#[cfg(feature = "send-control-msg")]
use reactor::MetaCellHandler;

#[cfg(feature = "send-control-msg")]
#[cfg_attr(docsrs, doc(cfg(feature = "send-control-msg")))]
pub use {
    msghandler::MsgHandler,
    reactor::{ConversationInHandler, MetaCellDisposition},
};

#[derive(Debug)]
/// A circuit that we have constructed over the Tor network.
///
/// # Circuit life cycle
///
/// `ClientCirc`s are created in an initially unusable state using [`Channel::new_circ`],
/// which returns a [`PendingClientCirc`].  To get a real (one-hop) circuit from
/// one of these, you invoke one of its `create_firsthop` methods (currently
/// [`create_firsthop_fast()`](PendingClientCirc::create_firsthop_fast) or
/// [`create_firsthop_ntor()`](PendingClientCirc::create_firsthop_ntor)).
/// Then, to add more hops to the circuit, you can call
/// [`extend_ntor()`](ClientCirc::extend_ntor) on it.
///
/// For higher-level APIs, see the `tor-circmgr` crate: the ones here in
/// `tor-proto` are probably not what you need.
///
/// After a circuit is created, it will persist until it is closed in one of
/// five ways:
///    1. A remote error occurs.
///    2. Some hop on the circuit sends a `DESTROY` message to tear down the
///       circuit.
///    3. The circuit's channel is closed.
///    4. Someone calls [`ClientCirc::terminate`] on the circuit.
///    5. The last reference to the `ClientCirc` is dropped. (Note that every stream
///       on a `ClientCirc` keeps a reference to it, which will in turn keep the
///       circuit from closing until all those streams have gone away.)
///
/// Note that in cases 1-4 the [`ClientCirc`] object itself will still exist: it
/// will just be unusable for most purposes.  Most operations on it will fail
/// with an error.
//
// Effectively, this struct contains two Arcs: one for `path` and one for
// `control` (which surely has something Arc-like in it).  We cannot unify
// these by putting a single Arc around the whole struct, and passing
// an Arc strong reference to the `Reactor`, because then `control` would
// not be dropped when the last user of the circuit goes away.  We could
// make the reactor have a weak reference but weak references are more
// expensive to dereference.
//
// Because of the above, cloning this struct is always going to involve
// two atomic refcount changes/checks.  Wrapping it in another Arc would
// be overkill.

pub struct ClientCirc {
    /// Mutable state shared with the `Reactor`.
    mutable: Arc<Mutex<MutableState>>,
    /// A unique identifier for this circuit.
    unique_id: UniqId,
    /// Channel to send control messages to the reactor.
    control: mpsc::UnboundedSender<CtrlMsg>,
    /// The channel that this ClientCirc is connected to and using to speak with
    /// its first hop.
    ///
    /// # Warning
    ///
    /// Don't use this field to send or receive any data, or perform any network
    /// operations for this circuit!  All network operations should be done by
    /// the circuit reactor.
    channel: Channel,
    /// For testing purposes: the CircId, for use in peek_circid().
    #[cfg(test)]
    circid: CircId,
}

/// Mutable state shared by [`ClientCirc`] and [`Reactor`].
#[derive(Debug)]
struct MutableState {
    /// Information about this circuit's path.
    ///
    /// This is stored in an Arc so that we can cheaply give a copy of it to
    /// client code; when we need to add a hop (which is less frequent) we use
    /// [`Arc::make_mut()`].
    path: Arc<path::Path>,
}

/// A ClientCirc that needs to send a create cell and receive a created* cell.
///
/// To use one of these, call create_firsthop_fast() or create_firsthop_ntor()
/// to negotiate the cryptographic handshake with the first hop.
pub struct PendingClientCirc {
    /// A oneshot receiver on which we'll receive a CREATED* cell,
    /// or a DESTROY cell.
    recvcreated: oneshot::Receiver<CreateResponse>,
    /// The ClientCirc object that we can expose on success.
    circ: Arc<ClientCirc>,
}

/// Description of the network's current rules for building circuits.
#[derive(Clone, Debug)]
pub struct CircParameters {
    /// Initial value to use for our outbound circuit-level windows.
    initial_send_window: u16,
    /// Whether we should include ed25519 identities when we send
    /// EXTEND2 cells.
    extend_by_ed25519_id: bool,
}

impl Default for CircParameters {
    fn default() -> CircParameters {
        CircParameters {
            initial_send_window: 1000,
            extend_by_ed25519_id: true,
        }
    }
}

impl CircParameters {
    /// Override the default initial send window for these parameters.
    /// Gives an error on any value above 1000.
    ///
    /// You should probably not call this.
    pub fn set_initial_send_window(&mut self, v: u16) -> Result<()> {
        if v <= 1000 {
            self.initial_send_window = v;
            Ok(())
        } else {
            Err(Error::from(bad_api_usage!(
                "Tried to set an initial send window over 1000"
            )))
        }
    }

    /// Return the initial send window as set in this parameter set.
    pub fn initial_send_window(&self) -> u16 {
        self.initial_send_window
    }

    /// Override the default decision about whether to use ed25519
    /// identities in outgoing EXTEND2 cells.
    ///
    /// You should probably not call this.
    pub fn set_extend_by_ed25519_id(&mut self, v: bool) {
        self.extend_by_ed25519_id = v;
    }

    /// Return true if we're configured to extend by ed25519 ID; false
    /// otherwise.
    pub fn extend_by_ed25519_id(&self) -> bool {
        self.extend_by_ed25519_id
    }
}

/// A stream on a particular circuit.
#[derive(Clone, Debug)]
pub(crate) struct StreamTarget {
    /// Which hop of the circuit this stream is with.
    hop_num: HopNum,
    /// Reactor ID for this stream.
    stream_id: StreamId,
    /// Channel to send cells down.
    tx: mpsc::Sender<AnyRelayMsg>,
    /// Reference to the circuit that this stream is on.
    circ: Arc<ClientCirc>,
}

impl ClientCirc {
    /// Return a description of the first hop of this circuit.
    ///
    /// # Panics
    ///
    /// Panics if there is no first hop.  (This should be impossible outside of
    /// the tor-proto crate, but within the crate it's possible to have a
    /// circuit with no hops.)
    pub fn first_hop(&self) -> OwnedChanTarget {
        let first_hop = self
            .mutable
            .lock()
            .expect("poisoned lock")
            .path
            .first_hop()
            .expect("called first_hop on an un-constructed circuit");
        match first_hop {
            path::HopDetail::Relay(r) => r,
            #[cfg(feature = "hs-common")]
            path::HopDetail::Virtual => {
                panic!("somehow made a circuit with a virtual first hop.")
            }
        }
    }

    /// Return a description of all the hops in this circuit.
    ///
    /// This method is **deprecated** for several reasons:
    ///   * It performs a deep copy.
    ///   * It ignores virtual hops.
    ///   * It's not so extensible.
    ///
    /// Use [`ClientCirc::path_ref()`] instead.
    #[deprecated(since = "0.11.1", note = "Use path_ref() instead.")]
    pub fn path(&self) -> Vec<OwnedChanTarget> {
        #[allow(clippy::unnecessary_filter_map)] // clippy is blind to the cfg
        self.mutable
            .lock()
            .expect("poisoned lock")
            .path
            .all_hops()
            .into_iter()
            .filter_map(|hop| match hop {
                path::HopDetail::Relay(r) => Some(r),
                #[cfg(feature = "hs-common")]
                path::HopDetail::Virtual => None,
            })
            .collect()
    }

    /// Return a [`Path`] object describing all the hops in this circuit.
    ///
    /// Note that this `Path` is not automatically updated if the circuit is
    /// extended.
    pub fn path_ref(&self) -> Arc<Path> {
        self.mutable.lock().expect("poisoned_lock").path.clone()
    }

    /// Return a reference to the channel that this circuit is connected to.
    ///
    /// A client circuit is always connected to some relay via a [`Channel`].
    /// That relay has to be the same relay as the first hop in the client's
    /// path.
    pub fn channel(&self) -> &Channel {
        &self.channel
    }

    /// Start an ad-hoc protocol exchange to the final hop on this circuit
    ///
    /// To use this:
    ///
    ///  0. Create an inter-task channel you'll use to receive
    ///     the outcome of your conversation,
    ///     and bundle it into a [`MsgHandler`].
    ///
    ///  1. Call `start_conversation_last_hop`.
    ///     This will install a your handler, for incoming messages,
    ///     and send the outgoing message (if you provided one).
    ///     After that, each message on the circuit
    ///     that isn't handled by the core machinery
    ///     is passed to your provided `reply_handler`.
    ///
    ///  2. Possibly call `send_msg` on the [`Conversation`],
    ///     from the call site of `start_conversation_last_hop`,
    ///     possibly multiple times, from time to time,
    ///     to send further desired messages to the peer.
    ///
    ///  3. In your [`MsgHandler`], process the incoming messages.
    ///     You may respond by
    ///     sending additional messages
    ///     (using the [`ConversationInHandler`] provided to `MsgHandler::handle_msg`,
    ///     or, outside the handler using the `Conversation`)
    ///     When the protocol exchange is finished,
    ///     `MsgHandler::handle_msg` should return
    ///     [`ConversationFinished`](MetaCellDisposition::ConversationFinished).
    ///
    /// If you don't need the `Conversation` to send followup messages,
    /// you may simply drop it,
    /// and rely on the responses you get from your handler,
    /// on the channel from step 0 above.
    /// Your handler will remain installed and able to process incoming messages
    /// until it returns `ConversationFinished`.
    ///
    /// Note that it is quite possible to use this function to violate the tor
    /// protocol; most users of this API will not need to call it.  It is used
    /// to implement most of the onion service handshake.
    ///
    /// # Limitations
    ///
    /// Only one conversation may be active at any one time,
    /// for any one circuit.
    /// This generally means that this function should not be called
    /// on a circuit which might be shared with anyone else.
    ///
    /// Likewise, it is forbidden to try to extend the circuit,
    /// while the conversation is in progress.
    ///
    /// After the conversation has finished, the circuit may be extended.
    /// Or, `start_conversation_last_hop` may be called again;
    /// but, in that case there will be a gap between the two conversations,
    /// during which no `MsgHandler` is installed,
    /// and unexpected incoming messages would close the circuit.
    ///
    /// If these restrictions are violated, the circuit will be closed with an error.
    ///
    /// ## Precise definition of the lifetime of a conversation
    ///
    /// A conversation is in progress from entry to `start_conversation_last_hop`,
    /// until entry to the body of the [`MsgHandler::handle_msg`]
    /// call which returns [`ConversationFinished`](MetaCellDisposition::ConversationFinished).
    /// (*Entry* since `handle_msg` is synchronously embedded
    /// into the incoming message processing.)
    /// So you may start a new conversation as soon as you have the final response
    /// via your inter-task channel from (0) above.
    ///
    /// The lifetime relationship of the [`Conversation`],
    /// vs the handler returning `ConversationFinished`
    /// is not enforced by the type system.
    // Doing so without still leaving plenty of scope for runtime errors doesn't seem possible,
    // at least while allowing sending followup messages from outside the handler.
    //
    // TODO hs: it might be nice to avoid exposing tor-cell APIs in the
    //   tor-proto interface.
    //
    // TODO hs: Possibly this function should use
    // HopNum or similar to indicate which hop we're talking to, rather than
    // just doing "the last hop".
    #[cfg(feature = "send-control-msg")]
    pub async fn start_conversation_last_hop(
        &self,
        msg: Option<tor_cell::relaycell::msg::AnyRelayMsg>,
        reply_handler: impl MsgHandler + Send + 'static,
    ) -> Result<Conversation<'_>> {
        let last_hop = self
            .mutable
            .lock()
            .expect("poisoned lock")
            .path
            .last_hop_num()
            .ok_or_else(|| internal!("no last hop index"))?;
        let handler = Box::new(msghandler::UserMsgHandler::new(last_hop, reply_handler));
        let conversation = Conversation(self);
        conversation.send_internal(msg, Some(handler)).await?;
        Ok(conversation)
    }

    /// Tell this circuit to begin allowing the final hop of the circuit to try
    /// to create new Tor streams, and to return those pending requests in an
    /// asynchronous stream.
    ///
    /// Ordinarily, these requests are rejected.  
    ///
    /// There can only be one stream of this type created on a given circuit at
    /// a time. If a such a stream already exists, this method will return an
    /// error.
    ///
    /// (This function is not yet implemented; right now, it will always panic.)
    ///
    /// Only onion services (and eventually) exit relays should call this
    /// method.
    #[cfg(feature = "hs-service")]
    #[allow(unused_variables)] // TODO hss remove
    pub fn allow_stream_requests(
        &self,
        allow_commands: &[tor_cell::relaycell::RelayCmd],
    ) -> Result<impl futures::Stream<Item = crate::stream::IncomingStream>> {
        if false {
            return Ok(futures::stream::empty()); // TODO hss remove; this is just here for type inference.
        }
        todo!() // TODO hss implement.
    }

    /// Extend the circuit via the ntor handshake to a new target last
    /// hop.
    pub async fn extend_ntor<Tg>(&self, target: &Tg, params: &CircParameters) -> Result<()>
    where
        Tg: CircTarget,
    {
        let key = NtorPublicKey {
            id: *target
                .rsa_identity()
                .ok_or(Error::MissingId(RelayIdType::Ed25519))?,
            pk: *target.ntor_onion_key(),
        };
        let mut linkspecs = target
            .linkspecs()
            .map_err(into_internal!("Could not encode linkspecs for extend_ntor"))?;
        if !params.extend_by_ed25519_id() {
            linkspecs.retain(|ls| ls.lstype() != LinkSpecType::ED25519ID);
        }

        let (tx, rx) = oneshot::channel();

        let peer_id = OwnedChanTarget::from_chan_target(target);
        self.control
            .unbounded_send(CtrlMsg::ExtendNtor {
                peer_id,
                public_key: key,
                linkspecs,
                params: params.clone(),
                done: tx,
            })
            .map_err(|_| Error::CircuitClosed)?;

        rx.await.map_err(|_| Error::CircuitClosed)??;

        Ok(())
    }

    /// Extend this circuit by a single, "virtual" hop.
    ///
    /// A virtual hop is one for which we do not add an actual network connection
    /// between separate hosts (such as Relays).  We only add a layer of
    /// cryptography.
    ///
    /// This is used to implement onion services: the client and the service
    /// both build a circuit to a single rendezvous point, and tell the
    /// rendezvous point to relay traffic between their two circuits.  Having
    /// completed a [`handshake`] out of band[^1], the parties each extend their
    /// circuits by a single "virtual" encryption hop that represents their
    /// shared cryptographic context.
    ///
    /// Once a circuit has been extended in this way, it is an error to try to
    /// extend it in any other way.
    ///
    /// [^1]: Technically, the handshake is only _mostly_ out of band: the
    ///     client sends their half of the handshake in an ` message, and the
    ///     service's response is inline in its `RENDEZVOUS2` message.
    //
    // TODO hs: let's try to enforce the "you can't extend a circuit again once
    // it has been extended this way" property.  We could do that with internal
    // state, or some kind of a type state pattern.
    //
    // TODO hs: possibly we should take a set of Protovers, and not just `Params`.
    #[cfg(feature = "hs-common")]
    pub async fn extend_virtual(
        &self,
        protocol: handshake::RelayProtocol,
        role: handshake::HandshakeRole,
        seed: impl handshake::KeyGenerator,
        params: CircParameters,
    ) -> Result<()> {
        let (outbound, inbound) = protocol.construct_layers(role, seed)?;

        let (tx, rx) = oneshot::channel();
        let message = CtrlMsg::ExtendVirtual {
            cell_crypto: (outbound, inbound),
            params,
            done: tx,
        };

        self.control
            .unbounded_send(message)
            .map_err(|_| Error::CircuitClosed)?;

        rx.await.map_err(|_| Error::CircuitClosed)?
    }

    /// Helper, used to begin a stream.
    ///
    /// This function allocates a stream ID, and sends the message
    /// (like a BEGIN or RESOLVE), but doesn't wait for a response.
    ///
    /// The caller will typically want to see the first cell in response,
    /// to see whether it is e.g. an END or a CONNECTED.
    async fn begin_stream_impl(
        self: &Arc<ClientCirc>,
        begin_msg: AnyRelayMsg,
        cmd_checker: AnyCmdChecker,
    ) -> Result<(StreamReader, StreamTarget)> {
        // TODO: Possibly this should take a hop, rather than just
        // assuming it's the last hop.

        let hop_num = self
            .mutable
            .lock()
            .expect("poisoned lock")
            .path
            .last_hop_num()
            .ok_or_else(|| Error::from(internal!("Can't begin a stream at the 0th hop")))?;

        let (sender, receiver) = mpsc::channel(STREAM_READER_BUFFER);
        let (tx, rx) = oneshot::channel();
        let (msg_tx, msg_rx) = mpsc::channel(CIRCUIT_BUFFER_SIZE);

        self.control
            .unbounded_send(CtrlMsg::BeginStream {
                hop_num,
                message: begin_msg,
                sender,
                rx: msg_rx,
                done: tx,
                cmd_checker,
            })
            .map_err(|_| Error::CircuitClosed)?;

        let stream_id = rx.await.map_err(|_| Error::CircuitClosed)??;

        let target = StreamTarget {
            circ: self.clone(),
            tx: msg_tx,
            hop_num,
            stream_id,
        };

        let reader = StreamReader {
            target: target.clone(),
            receiver,
            recv_window: StreamRecvWindow::new(RECV_WINDOW_INIT),
            ended: false,
        };

        Ok((reader, target))
    }

    /// Start a DataStream (anonymized connection) to the given
    /// address and port, using a BEGIN cell.
    async fn begin_data_stream(
        self: &Arc<ClientCirc>,
        msg: AnyRelayMsg,
        optimistic: bool,
    ) -> Result<DataStream> {
        let (reader, target) = self
            .begin_stream_impl(msg, DataCmdChecker::new_any())
            .await?;
        let mut stream = DataStream::new(reader, target);
        if !optimistic {
            stream.wait_for_connection().await?;
        }
        Ok(stream)
    }

    /// Start a stream to the given address and port, using a BEGIN
    /// cell.
    ///
    /// The use of a string for the address is intentional: you should let
    /// the remote Tor relay do the hostname lookup for you.
    pub async fn begin_stream(
        self: &Arc<ClientCirc>,
        target: &str,
        port: u16,
        parameters: Option<StreamParameters>,
    ) -> Result<DataStream> {
        let parameters = parameters.unwrap_or_default();
        let begin_flags = parameters.begin_flags();
        let optimistic = parameters.is_optimistic();
        let beginmsg = Begin::new(target, port, begin_flags)
            .map_err(|e| Error::from_cell_enc(e, "begin message"))?;
        self.begin_data_stream(beginmsg.into(), optimistic).await
    }

    /// Start a new stream to the last relay in the circuit, using
    /// a BEGIN_DIR cell.
    pub async fn begin_dir_stream(self: Arc<ClientCirc>) -> Result<DataStream> {
        // Note that we always open begindir connections optimistically.
        // Since they are local to a relay that we've already authenticated
        // with and built a circuit to, there should be no additional checks
        // we need to perform to see whether the BEGINDIR will succeed.
        self.begin_data_stream(AnyRelayMsg::BeginDir(Default::default()), true)
            .await
    }

    /// Perform a DNS lookup, using a RESOLVE cell with the last relay
    /// in this circuit.
    ///
    /// Note that this function does not check for timeouts; that's
    /// the caller's responsibility.
    pub async fn resolve(self: &Arc<ClientCirc>, hostname: &str) -> Result<Vec<IpAddr>> {
        let resolve_msg = Resolve::new(hostname);

        let resolved_msg = self.try_resolve(resolve_msg).await?;

        resolved_msg
            .into_answers()
            .into_iter()
            .filter_map(|(val, _)| match resolvedval_to_result(val) {
                Ok(ResolvedVal::Ip(ip)) => Some(Ok(ip)),
                Ok(_) => None,
                Err(e) => Some(Err(e)),
            })
            .collect()
    }

    /// Perform a reverse DNS lookup, by sending a RESOLVE cell with
    /// the last relay on this circuit.
    ///
    /// Note that this function does not check for timeouts; that's
    /// the caller's responsibility.
    pub async fn resolve_ptr(self: &Arc<ClientCirc>, addr: IpAddr) -> Result<Vec<String>> {
        let resolve_ptr_msg = Resolve::new_reverse(&addr);

        let resolved_msg = self.try_resolve(resolve_ptr_msg).await?;

        resolved_msg
            .into_answers()
            .into_iter()
            .filter_map(|(val, _)| match resolvedval_to_result(val) {
                Ok(ResolvedVal::Hostname(v)) => Some(
                    String::from_utf8(v)
                        .map_err(|_| Error::StreamProto("Resolved Hostname was not utf-8".into())),
                ),
                Ok(_) => None,
                Err(e) => Some(Err(e)),
            })
            .collect()
    }

    /// Helper: Send the resolve message, and read resolved message from
    /// resolve stream.
    async fn try_resolve(self: &Arc<ClientCirc>, msg: Resolve) -> Result<Resolved> {
        let (reader, _) = self
            .begin_stream_impl(msg.into(), ResolveCmdChecker::new_any())
            .await?;
        let mut resolve_stream = ResolveStream::new(reader);
        resolve_stream.read_msg().await
    }

    /// Shut down this circuit, along with all streams that are using it.
    /// Happens asynchronously (i.e. the circuit won't necessarily be done shutting down
    /// immediately after this function returns!).
    ///
    /// Note that other references to this circuit may exist.  If they
    /// do, they will stop working after you call this function.
    ///
    /// It's not necessary to call this method if you're just done
    /// with a circuit: the channel should close on its own once nothing
    /// is using it any more.
    pub fn terminate(&self) {
        let _ = self.control.unbounded_send(CtrlMsg::Shutdown);
    }

    /// Called when a circuit-level protocol error has occurred and the
    /// circuit needs to shut down.
    ///
    /// This is a separate function because we may eventually want to have
    /// it do more than just shut down.
    ///
    /// As with `terminate`, this function is asynchronous.
    pub(crate) fn protocol_error(&self) {
        self.terminate();
    }

    /// Return true if this circuit is closed and therefore unusable.
    pub fn is_closing(&self) -> bool {
        self.control.is_closed()
    }

    /// Return a process-unique identifier for this circuit.
    pub fn unique_id(&self) -> UniqId {
        self.unique_id
    }

    /// Return the number of hops in this circuit.
    ///
    /// NOTE: This function will currently return only the number of hops
    /// _currently_ in the circuit. If there is an extend operation in progress,
    /// the currently pending hop may or may not be counted, depending on whether
    /// the extend operation finishes before this call is done.
    pub fn n_hops(&self) -> usize {
        self.mutable.lock().expect("poisoned lock").path.n_hops()
    }
}

/// Handle to use during an ongoing protocol exchange with a circuit's last hop
///
/// This is obtained from [`ClientCirc::start_conversation_last_hop`],
/// and used to send messages to the last hop relay.
///
/// See also [`ConversationInHandler`], which is a type used for the same purpose
/// but available only inside [`MsgHandler::handle_msg`].
#[cfg(feature = "send-control-msg")]
#[cfg_attr(docsrs, doc(cfg(feature = "send-control-msg")))]
pub struct Conversation<'r>(&'r ClientCirc);

#[cfg(feature = "send-control-msg")]
#[cfg_attr(docsrs, doc(cfg(feature = "send-control-msg")))]
impl Conversation<'_> {
    /// Send a protocol message as part of an ad-hoc exchange
    ///
    /// Responses are handled by the `MsgHandler` set up
    /// when the `Conversation` was created.
    pub async fn send_message(&self, msg: tor_cell::relaycell::msg::AnyRelayMsg) -> Result<()> {
        self.send_internal(Some(msg), None).await
    }

    /// Send a `SendMsgAndInstallHandler` to the reactor and wait for the outcome
    ///
    /// The guts of `start_conversation_last_hop` and `Conversation::send_msg`
    async fn send_internal(
        &self,
        msg: Option<tor_cell::relaycell::msg::AnyRelayMsg>,
        handler: Option<Box<dyn MetaCellHandler + Send + 'static>>,
    ) -> Result<()> {
        let msg = msg.map(|msg| tor_cell::relaycell::AnyRelayCell::new(0.into(), msg));
        let (sender, receiver) = oneshot::channel();

        let ctrl_msg = CtrlMsg::SendMsgAndInstallHandler {
            msg,
            handler,
            sender,
        };
        self.0
            .control
            .unbounded_send(ctrl_msg)
            .map_err(|_| Error::CircuitClosed)?;

        receiver.await.map_err(|_| Error::CircuitClosed)?
    }
}

impl PendingClientCirc {
    /// Instantiate a new circuit object: used from Channel::new_circ().
    ///
    /// Does not send a CREATE* cell on its own.
    ///
    ///
    pub(crate) fn new(
        id: CircId,
        channel: Channel,
        createdreceiver: oneshot::Receiver<CreateResponse>,
        input: mpsc::Receiver<ClientCircChanMsg>,
        unique_id: UniqId,
    ) -> (PendingClientCirc, reactor::Reactor) {
        let (reactor, control_tx, mutable) = Reactor::new(channel.clone(), id, unique_id, input);

        let circuit = ClientCirc {
            mutable,
            unique_id,
            control: control_tx,
            channel,
            #[cfg(test)]
            circid: id,
        };

        let pending = PendingClientCirc {
            recvcreated: createdreceiver,
            circ: Arc::new(circuit),
        };
        (pending, reactor)
    }

    /// Testing only: Extract the circuit ID for this pending circuit.
    #[cfg(test)]
    pub(crate) fn peek_circid(&self) -> CircId {
        self.circ.circid
    }

    /// Use the (questionable!) CREATE_FAST handshake to connect to the
    /// first hop of this circuit.
    ///
    /// There's no authentication in CRATE_FAST,
    /// so we don't need to know whom we're connecting to: we're just
    /// connecting to whichever relay the channel is for.
    pub async fn create_firsthop_fast(self, params: &CircParameters) -> Result<Arc<ClientCirc>> {
        let (tx, rx) = oneshot::channel();
        self.circ
            .control
            .unbounded_send(CtrlMsg::Create {
                recv_created: self.recvcreated,
                handshake: CircuitHandshake::CreateFast,
                params: params.clone(),
                done: tx,
            })
            .map_err(|_| Error::CircuitClosed)?;

        rx.await.map_err(|_| Error::CircuitClosed)??;

        Ok(self.circ)
    }

    /// Use the ntor handshake to connect to the first hop of this circuit.
    ///
    /// Note that the provided 'target' must match the channel's target,
    /// or the handshake will fail.
    pub async fn create_firsthop_ntor<Tg>(
        self,
        target: &Tg,
        params: CircParameters,
    ) -> Result<Arc<ClientCirc>>
    where
        Tg: tor_linkspec::CircTarget,
    {
        let (tx, rx) = oneshot::channel();

        self.circ
            .control
            .unbounded_send(CtrlMsg::Create {
                recv_created: self.recvcreated,
                handshake: CircuitHandshake::Ntor {
                    public_key: NtorPublicKey {
                        id: *target
                            .rsa_identity()
                            .ok_or(Error::MissingId(RelayIdType::Rsa))?,
                        pk: *target.ntor_onion_key(),
                    },
                    ed_identity: *target
                        .ed_identity()
                        .ok_or(Error::MissingId(RelayIdType::Ed25519))?,
                },
                params: params.clone(),
                done: tx,
            })
            .map_err(|_| Error::CircuitClosed)?;

        rx.await.map_err(|_| Error::CircuitClosed)??;

        Ok(self.circ)
    }
}

/// An object that can put a given handshake into a ChanMsg for a CREATE*
/// cell, and unwrap a CREATED* cell.
trait CreateHandshakeWrap {
    /// Construct an appropriate ChanMsg to hold this kind of handshake.
    fn to_chanmsg(&self, bytes: Vec<u8>) -> AnyChanMsg;
    /// Decode a ChanMsg to an appropriate handshake value, checking
    /// its type.
    fn decode_chanmsg(&self, msg: CreateResponse) -> Result<Vec<u8>>;
}

/// A CreateHandshakeWrap that generates CREATE_FAST and handles CREATED_FAST.
struct CreateFastWrap;

impl CreateHandshakeWrap for CreateFastWrap {
    fn to_chanmsg(&self, bytes: Vec<u8>) -> AnyChanMsg {
        chancell::msg::CreateFast::new(bytes).into()
    }
    fn decode_chanmsg(&self, msg: CreateResponse) -> Result<Vec<u8>> {
        use CreateResponse::*;
        match msg {
            CreatedFast(m) => Ok(m.into_handshake()),
            Destroy(_) => Err(Error::CircRefused(
                "Relay replied to CREATE_FAST with DESTROY.",
            )),
            _ => Err(Error::CircProto(format!(
                "Relay replied to CREATE_FAST with unexpected cell: {}",
                msg
            ))),
        }
    }
}

/// A CreateHandshakeWrap that generates CREATE2 and handles CREATED2
struct Create2Wrap {
    /// The handshake type to put in the CREATE2 cell.
    handshake_type: u16,
}
impl CreateHandshakeWrap for Create2Wrap {
    fn to_chanmsg(&self, bytes: Vec<u8>) -> AnyChanMsg {
        chancell::msg::Create2::new(self.handshake_type, bytes).into()
    }
    fn decode_chanmsg(&self, msg: CreateResponse) -> Result<Vec<u8>> {
        use CreateResponse::*;
        match msg {
            Created2(m) => Ok(m.into_body()),
            Destroy(_) => Err(Error::CircRefused("Relay replied to CREATE2 with DESTROY.")),
            _ => Err(Error::CircProto(format!(
                "Relay replied to CREATE2 with unexpected cell {}",
                msg
            ))),
        }
    }
}

impl StreamTarget {
    /// Deliver a relay message for the stream that owns this StreamTarget.
    ///
    /// The StreamTarget will set the correct stream ID and pick the
    /// right hop, but will not validate that the message is well-formed
    /// or meaningful in context.
    pub(crate) async fn send(&mut self, msg: AnyRelayMsg) -> Result<()> {
        self.tx.send(msg).await.map_err(|_| Error::CircuitClosed)?;
        Ok(())
    }

    /// Called when a circuit-level protocol error has occurred and the
    /// circuit needs to shut down.
    pub(crate) fn protocol_error(&mut self) {
        self.circ.protocol_error();
    }

    /// Send a SENDME cell for this stream.
    pub(crate) fn send_sendme(&mut self) -> Result<()> {
        self.circ
            .control
            .unbounded_send(CtrlMsg::SendSendme {
                stream_id: self.stream_id,
                hop_num: self.hop_num,
            })
            .map_err(|_| Error::CircuitClosed)?;
        Ok(())
    }

    /// Return a reference to the circuit that this `StreamTarget` is using.
    #[cfg(feature = "experimental-api")]
    pub(crate) fn circuit(&self) -> &Arc<ClientCirc> {
        &self.circ
    }
}

/// Convert a [`ResolvedVal`] into a Result, based on whether or not
/// it represents an error.
fn resolvedval_to_result(val: ResolvedVal) -> Result<ResolvedVal> {
    match val {
        ResolvedVal::TransientError => Err(Error::ResolveError(ResolveError::Transient)),
        ResolvedVal::NontransientError => Err(Error::ResolveError(ResolveError::Nontransient)),
        ResolvedVal::Unrecognized(_, _) => Err(Error::ResolveError(ResolveError::Unrecognized)),
        _ => Ok(val),
    }
}

#[cfg(test)]
mod test {
    // @@ begin test lint list maintained by maint/add_warning @@
    #![allow(clippy::bool_assert_comparison)]
    #![allow(clippy::clone_on_copy)]
    #![allow(clippy::dbg_macro)]
    #![allow(clippy::print_stderr)]
    #![allow(clippy::print_stdout)]
    #![allow(clippy::single_char_pattern)]
    #![allow(clippy::unwrap_used)]
    #![allow(clippy::unchecked_duration_subtraction)]
    #![allow(clippy::useless_vec)]
    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->

    use super::*;
    use crate::channel::OpenChanCellS2C;
    use crate::channel::{test::new_reactor, CodecError};
    use crate::crypto::cell::RelayCellBody;
    use chanmsg::{AnyChanMsg, Created2, CreatedFast};
    use futures::channel::mpsc::{Receiver, Sender};
    use futures::io::{AsyncReadExt, AsyncWriteExt};
    use futures::sink::SinkExt;
    use futures::stream::StreamExt;
    use futures::task::SpawnExt;
    use hex_literal::hex;
    use std::time::Duration;
    use tor_basic_utils::test_rng::testing_rng;
    use tor_cell::chancell::{msg as chanmsg, AnyChanCell, BoxedCellBody};
    use tor_cell::relaycell::{msg as relaymsg, AnyRelayCell, StreamId};
    use tor_linkspec::OwnedCircTarget;
    use tor_rtcompat::{Runtime, SleepProvider};
    use tracing::trace;

    fn rmsg_to_ccmsg<ID>(id: ID, msg: relaymsg::AnyRelayMsg) -> ClientCircChanMsg
    where
        ID: Into<StreamId>,
    {
        let body: BoxedCellBody = AnyRelayCell::new(id.into(), msg)
            .encode(&mut testing_rng())
            .unwrap();
        let chanmsg = chanmsg::Relay::from(body);
        ClientCircChanMsg::Relay(chanmsg)
    }

    /// return an example OwnedCircTarget that can get used for an ntor handshake.
    fn example_target() -> OwnedCircTarget {
        let mut builder = OwnedCircTarget::builder();
        builder
            .chan_target()
            .ed_identity([6; 32].into())
            .rsa_identity([10; 20].into());
        builder
            .ntor_onion_key(
                hex!("395cb26b83b3cd4b91dba9913e562ae87d21ecdd56843da7ca939a6a69001253").into(),
            )
            .protocols("FlowCtrl=1".parse().unwrap())
            .build()
            .unwrap()
    }
    fn example_ntor_key() -> crate::crypto::handshake::ntor::NtorSecretKey {
        crate::crypto::handshake::ntor::NtorSecretKey::new(
            hex!("7789d92a89711a7e2874c61ea495452cfd48627b3ca2ea9546aafa5bf7b55803").into(),
            hex!("395cb26b83b3cd4b91dba9913e562ae87d21ecdd56843da7ca939a6a69001253").into(),
            [10_u8; 20].into(),
        )
    }

    fn working_fake_channel<R: Runtime>(
        rt: &R,
    ) -> (
        Channel,
        Receiver<AnyChanCell>,
        Sender<std::result::Result<OpenChanCellS2C, CodecError>>,
    ) {
        let (channel, chan_reactor, rx, tx) = new_reactor(rt.clone());
        rt.spawn(async {
            let _ignore = chan_reactor.run().await;
        })
        .unwrap();
        (channel, rx, tx)
    }

    async fn test_create<R: Runtime>(rt: &R, fast: bool) {
        // We want to try progressing from a pending circuit to a circuit
        // via a crate_fast handshake.

        use crate::crypto::handshake::{fast::CreateFastServer, ntor::NtorServer, ServerHandshake};

        let (chan, mut rx, _sink) = working_fake_channel(rt);
        let circid = 128.into();
        let (created_send, created_recv) = oneshot::channel();
        let (_circmsg_send, circmsg_recv) = mpsc::channel(64);
        let unique_id = UniqId::new(23, 17);

        let (pending, reactor) =
            PendingClientCirc::new(circid, chan, created_recv, circmsg_recv, unique_id);

        rt.spawn(async {
            let _ignore = reactor.run().await;
        })
        .unwrap();

        // Future to pretend to be a relay on the other end of the circuit.
        let simulate_relay_fut = async move {
            let mut rng = testing_rng();
            let create_cell = rx.next().await.unwrap();
            assert_eq!(create_cell.circid(), 128.into());
            let reply = if fast {
                let cf = match create_cell.msg() {
                    AnyChanMsg::CreateFast(cf) => cf,
                    _ => panic!(),
                };
                let (_, rep) = CreateFastServer::server(&mut rng, &[()], cf.handshake()).unwrap();
                CreateResponse::CreatedFast(CreatedFast::new(rep))
            } else {
                let c2 = match create_cell.msg() {
                    AnyChanMsg::Create2(c2) => c2,
                    _ => panic!(),
                };
                let (_, rep) =
                    NtorServer::server(&mut rng, &[example_ntor_key()], c2.body()).unwrap();
                CreateResponse::Created2(Created2::new(rep))
            };
            created_send.send(reply).unwrap();
        };
        // Future to pretend to be a client.
        let client_fut = async move {
            let target = example_target();
            let params = CircParameters::default();
            let ret = if fast {
                trace!("doing fast create");
                pending.create_firsthop_fast(&params).await
            } else {
                trace!("doing ntor create");
                pending.create_firsthop_ntor(&target, params).await
            };
            trace!("create done: result {:?}", ret);
            ret
        };

        let (circ, _) = futures::join!(client_fut, simulate_relay_fut);

        let _circ = circ.unwrap();

        // pfew!  We've build a circuit!  Let's make sure it has one hop.
        /* TODO: reinstate this.
        let inner = Arc::get_mut(&mut circuit).unwrap().c.into_inner();
        assert_eq!(inner.hops.len(), 1);
         */
    }

    #[test]
    fn test_create_fast() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            test_create(&rt, true).await;
        });
    }
    #[test]
    fn test_create_ntor() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            test_create(&rt, false).await;
        });
    }

    // An encryption layer that doesn't do any crypto.   Can be used
    // as inbound or outbound, but not both at once.
    pub(crate) struct DummyCrypto {
        counter_tag: [u8; 20],
        counter: u32,
        lasthop: bool,
    }
    impl DummyCrypto {
        fn next_tag(&mut self) -> &[u8; 20] {
            #![allow(clippy::identity_op)]
            self.counter_tag[0] = ((self.counter >> 0) & 255) as u8;
            self.counter_tag[1] = ((self.counter >> 8) & 255) as u8;
            self.counter_tag[2] = ((self.counter >> 16) & 255) as u8;
            self.counter_tag[3] = ((self.counter >> 24) & 255) as u8;
            self.counter += 1;
            &self.counter_tag
        }
    }

    impl crate::crypto::cell::OutboundClientLayer for DummyCrypto {
        fn originate_for(&mut self, _cell: &mut RelayCellBody) -> &[u8] {
            self.next_tag()
        }
        fn encrypt_outbound(&mut self, _cell: &mut RelayCellBody) {}
    }
    impl crate::crypto::cell::InboundClientLayer for DummyCrypto {
        fn decrypt_inbound(&mut self, _cell: &mut RelayCellBody) -> Option<&[u8]> {
            if self.lasthop {
                Some(self.next_tag())
            } else {
                None
            }
        }
    }
    impl DummyCrypto {
        pub(crate) fn new(lasthop: bool) -> Self {
            DummyCrypto {
                counter_tag: [0; 20],
                counter: 0,
                lasthop,
            }
        }
    }

    // Helper: set up a 3-hop circuit with no encryption, where the
    // next inbound message seems to come from hop next_msg_from
    async fn newcirc_ext<R: Runtime>(
        rt: &R,
        chan: Channel,
        next_msg_from: HopNum,
    ) -> (Arc<ClientCirc>, mpsc::Sender<ClientCircChanMsg>) {
        let circid = 128.into();
        let (_created_send, created_recv) = oneshot::channel();
        let (circmsg_send, circmsg_recv) = mpsc::channel(64);
        let unique_id = UniqId::new(23, 17);

        let (pending, reactor) =
            PendingClientCirc::new(circid, chan, created_recv, circmsg_recv, unique_id);

        rt.spawn(async {
            let _ignore = reactor.run().await;
        })
        .unwrap();

        let PendingClientCirc {
            circ,
            recvcreated: _,
        } = pending;

        for idx in 0_u8..3 {
            let params = CircParameters::default();
            let (tx, rx) = oneshot::channel();
            circ.control
                .unbounded_send(CtrlMsg::AddFakeHop {
                    fwd_lasthop: idx == 2,
                    rev_lasthop: idx == u8::from(next_msg_from),
                    params,
                    done: tx,
                })
                .unwrap();
            rx.await.unwrap().unwrap();
        }

        (circ, circmsg_send)
    }

    // Helper: set up a 3-hop circuit with no encryption, where the
    // next inbound message seems to come from hop next_msg_from
    async fn newcirc<R: Runtime>(
        rt: &R,
        chan: Channel,
    ) -> (Arc<ClientCirc>, mpsc::Sender<ClientCircChanMsg>) {
        newcirc_ext(rt, chan, 2.into()).await
    }

    // Try sending a cell via send_relay_cell
    #[test]
    fn send_simple() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            let (chan, mut rx, _sink) = working_fake_channel(&rt);
            let (circ, _send) = newcirc(&rt, chan).await;
            let begindir = AnyRelayCell::new(0.into(), AnyRelayMsg::BeginDir(Default::default()));
            circ.control
                .unbounded_send(CtrlMsg::SendRelayCell {
                    hop: 2.into(),
                    early: false,
                    cell: begindir,
                })
                .unwrap();

            // Here's what we tried to put on the TLS channel.  Note that
            // we're using dummy relay crypto for testing convenience.
            let rcvd = rx.next().await.unwrap();
            assert_eq!(rcvd.circid(), 128.into());
            let m = match rcvd.into_circid_and_msg().1 {
                AnyChanMsg::Relay(r) => AnyRelayCell::decode(r.into_relay_body()).unwrap(),
                _ => panic!(),
            };
            assert!(matches!(m.msg(), AnyRelayMsg::BeginDir(_)));
        });
    }

    // NOTE(eta): this test is commented out because it basically tested implementation details
    //            of the old code which are hard to port to the reactor version, and the behaviour
    //            is covered by the extend tests anyway, so I don't think it's worth it.

    /*
    // Try getting a "meta-cell", which is what we're calling those not
    // for a specific circuit.
    #[async_test]
    async fn recv_meta() {
        let (chan, _, _sink) = working_fake_channel();
        let (circ, mut reactor, mut sink) = newcirc(chan).await;

        // 1: Try doing it via handle_meta_cell directly.
        let meta_receiver = circ.register_meta_handler(2.into()).await.unwrap();
        let extended: RelayMsg = relaymsg::Extended2::new((*b"123").into()).into();
        {
            circ.c
                .lock()
                .await
                .handle_meta_cell(2.into(), extended.clone())
                .await
                .unwrap();
        }
        let msg = meta_receiver.await.unwrap().unwrap();
        assert!(matches!(msg, RelayMsg::Extended2(_)));

        // 2: Try doing it via the reactor.
        let meta_receiver = circ.register_meta_handler(2.into()).await.unwrap();
        sink.send(rmsg_to_ccmsg(0, extended.clone())).await.unwrap();
        reactor.run_once().await.unwrap();
        let msg = meta_receiver.await.unwrap().unwrap();
        assert!(matches!(msg, RelayMsg::Extended2(_)));

        // 3: Try getting a meta cell that we didn't want.
        let e = {
            circ.c
                .lock()
                .await
                .handle_meta_cell(2.into(), extended.clone())
                .await
                .err()
                .unwrap()
        };
        assert_eq!(
            format!("{}", e),
            "circuit protocol violation: Unexpected EXTENDED2 cell on client circuit"
        );

        // 3: Try getting a meta from a hop that we didn't want.
        let _receiver = circ.register_meta_handler(2.into()).await.unwrap();
        let e = {
            circ.c
                .lock()
                .await
                .handle_meta_cell(1.into(), extended.clone())
                .await
                .err()
                .unwrap()
        };
        assert_eq!(
            format!("{}", e),
            "circuit protocol violation: Unexpected EXTENDED2 cell from hop 1 on client circuit"
        );
    }
     */

    #[test]
    fn extend() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            use crate::crypto::handshake::{ntor::NtorServer, ServerHandshake};

            let (chan, mut rx, _sink) = working_fake_channel(&rt);
            let (circ, mut sink) = newcirc(&rt, chan).await;
            let params = CircParameters::default();

            let extend_fut = async move {
                let target = example_target();
                circ.extend_ntor(&target, &params).await.unwrap();
                circ // gotta keep the circ alive, or the reactor would exit.
            };
            let reply_fut = async move {
                // We've disabled encryption on this circuit, so we can just
                // read the extend2 cell.
                let (id, chmsg) = rx.next().await.unwrap().into_circid_and_msg();
                assert_eq!(id, 128.into());
                let rmsg = match chmsg {
                    AnyChanMsg::RelayEarly(r) => AnyRelayCell::decode(r.into_relay_body()).unwrap(),
                    _ => panic!(),
                };
                let e2 = match rmsg.msg() {
                    AnyRelayMsg::Extend2(e2) => e2,
                    _ => panic!(),
                };
                let mut rng = testing_rng();
                let (_, reply) =
                    NtorServer::server(&mut rng, &[example_ntor_key()], e2.handshake()).unwrap();
                let extended2 = relaymsg::Extended2::new(reply).into();
                sink.send(rmsg_to_ccmsg(0, extended2)).await.unwrap();
                sink // gotta keep the sink alive, or the reactor will exit.
            };

            let (circ, _) = futures::join!(extend_fut, reply_fut);

            // Did we really add another hop?
            assert_eq!(circ.n_hops(), 4);

            // Do the path accessors report a reasonable outcome?
            #[allow(deprecated)]
            {
                let path = circ.path();
                assert_eq!(path.len(), 4);
                use tor_linkspec::HasRelayIds;
                assert_eq!(path[3].ed_identity(), example_target().ed_identity());
                assert_ne!(path[0].ed_identity(), example_target().ed_identity());
            }
            {
                let path = circ.path_ref();
                assert_eq!(path.n_hops(), 4);
                use tor_linkspec::HasRelayIds;
                assert_eq!(
                    path.hops()[3].as_chan_target().unwrap().ed_identity(),
                    example_target().ed_identity()
                );
                assert_ne!(
                    path.hops()[0].as_chan_target().unwrap().ed_identity(),
                    example_target().ed_identity()
                );
            }
        });
    }

    async fn bad_extend_test_impl<R: Runtime>(
        rt: &R,
        reply_hop: HopNum,
        bad_reply: ClientCircChanMsg,
    ) -> Error {
        let (chan, _rx, _sink) = working_fake_channel(rt);
        let (circ, mut sink) = newcirc_ext(rt, chan, reply_hop).await;
        let params = CircParameters::default();

        let target = example_target();
        #[allow(clippy::clone_on_copy)]
        let rtc = rt.clone();
        let sink_handle = rt
            .spawn_with_handle(async move {
                rtc.sleep(Duration::from_millis(100)).await;
                sink.send(bad_reply).await.unwrap();
                sink
            })
            .unwrap();
        let outcome = circ.extend_ntor(&target, &params).await;
        let _sink = sink_handle.await;

        assert_eq!(circ.n_hops(), 3);
        assert!(outcome.is_err());
        outcome.unwrap_err()
    }

    #[test]
    fn bad_extend_wronghop() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            let extended2 = relaymsg::Extended2::new(vec![]).into();
            let cc = rmsg_to_ccmsg(0, extended2);

            let error = bad_extend_test_impl(&rt, 1.into(), cc).await;
            // This case shows up as a CircDestroy, since a message sent
            // from the wrong hop won't even be delivered to the extend
            // code's meta-handler.  Instead the unexpected message will cause
            // the circuit to get torn down.
            match error {
                Error::CircuitClosed => {}
                x => panic!("got other error: {}", x),
            }
        });
    }

    #[test]
    fn bad_extend_wrongtype() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            let extended = relaymsg::Extended::new(vec![7; 200]).into();
            let cc = rmsg_to_ccmsg(0, extended);

            let error = bad_extend_test_impl(&rt, 2.into(), cc).await;
            match error {
                Error::BytesErr {
                    err: tor_bytes::Error::InvalidMessage(_),
                    object: "extended2 message",
                } => {}
                _ => panic!(),
            }
        });
    }

    #[test]
    fn bad_extend_destroy() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            let cc = ClientCircChanMsg::Destroy(chanmsg::Destroy::new(4.into()));
            let error = bad_extend_test_impl(&rt, 2.into(), cc).await;
            match error {
                Error::CircuitClosed => {}
                _ => panic!(),
            }
        });
    }

    #[test]
    fn bad_extend_crypto() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            let extended2 = relaymsg::Extended2::new(vec![99; 256]).into();
            let cc = rmsg_to_ccmsg(0, extended2);
            let error = bad_extend_test_impl(&rt, 2.into(), cc).await;
            assert!(matches!(error, Error::BadCircHandshakeAuth));
        });
    }

    #[test]
    fn begindir() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            let (chan, mut rx, _sink) = working_fake_channel(&rt);
            let (circ, mut sink) = newcirc(&rt, chan).await;

            let begin_and_send_fut = async move {
                // Here we'll say we've got a circuit, and we want to
                // make a simple BEGINDIR request with it.
                let mut stream = circ.begin_dir_stream().await.unwrap();
                stream.write_all(b"HTTP/1.0 GET /\r\n").await.unwrap();
                stream.flush().await.unwrap();
                let mut buf = [0_u8; 1024];
                let n = stream.read(&mut buf).await.unwrap();
                assert_eq!(&buf[..n], b"HTTP/1.0 404 Not found\r\n");
                let n = stream.read(&mut buf).await.unwrap();
                assert_eq!(n, 0);
                stream
            };
            let reply_fut = async move {
                // We've disabled encryption on this circuit, so we can just
                // read the begindir cell.
                let (id, chmsg) = rx.next().await.unwrap().into_circid_and_msg();
                assert_eq!(id, 128.into()); // hardcoded circid.
                let rmsg = match chmsg {
                    AnyChanMsg::Relay(r) => AnyRelayCell::decode(r.into_relay_body()).unwrap(),
                    _ => panic!(),
                };
                let (streamid, rmsg) = rmsg.into_streamid_and_msg();
                assert!(matches!(rmsg, AnyRelayMsg::BeginDir(_)));

                // Reply with a Connected cell to indicate success.
                let connected = relaymsg::Connected::new_empty().into();
                sink.send(rmsg_to_ccmsg(streamid, connected)).await.unwrap();

                // Now read a DATA cell...
                let (id, chmsg) = rx.next().await.unwrap().into_circid_and_msg();
                assert_eq!(id, 128.into());
                let rmsg = match chmsg {
                    AnyChanMsg::Relay(r) => AnyRelayCell::decode(r.into_relay_body()).unwrap(),
                    _ => panic!(),
                };
                let (streamid_2, rmsg) = rmsg.into_streamid_and_msg();
                assert_eq!(streamid_2, streamid);
                if let AnyRelayMsg::Data(d) = rmsg {
                    assert_eq!(d.as_ref(), &b"HTTP/1.0 GET /\r\n"[..]);
                } else {
                    panic!();
                }

                // Write another data cell in reply!
                let data = relaymsg::Data::new(b"HTTP/1.0 404 Not found\r\n")
                    .unwrap()
                    .into();
                sink.send(rmsg_to_ccmsg(streamid, data)).await.unwrap();

                // Send an END cell to say that the conversation is over.
                let end = relaymsg::End::new_with_reason(relaymsg::EndReason::DONE).into();
                sink.send(rmsg_to_ccmsg(streamid, end)).await.unwrap();

                (rx, sink) // gotta keep these alive, or the reactor will exit.
            };

            let (_stream, (_rx, _sink)) = futures::join!(begin_and_send_fut, reply_fut);
        });
    }

    // Set up a circuit and stream that expects some incoming SENDMEs.
    async fn setup_incoming_sendme_case<R: Runtime>(
        rt: &R,
        n_to_send: usize,
    ) -> (
        Arc<ClientCirc>,
        DataStream,
        mpsc::Sender<ClientCircChanMsg>,
        StreamId,
        usize,
        Receiver<AnyChanCell>,
        Sender<std::result::Result<OpenChanCellS2C, CodecError>>,
    ) {
        let (chan, mut rx, sink2) = working_fake_channel(rt);
        let (circ, mut sink) = newcirc(rt, chan).await;

        let circ_clone = circ.clone();
        let begin_and_send_fut = async move {
            // Take our circuit and make a stream on it.
            let mut stream = circ_clone
                .begin_stream("www.example.com", 443, None)
                .await
                .unwrap();
            let junk = [0_u8; 1024];
            let mut remaining = n_to_send;
            while remaining > 0 {
                let n = std::cmp::min(remaining, junk.len());
                stream.write_all(&junk[..n]).await.unwrap();
                remaining -= n;
            }
            stream.flush().await.unwrap();
            stream
        };

        let receive_fut = async move {
            // Read the begindir cell.
            let (_id, chmsg) = rx.next().await.unwrap().into_circid_and_msg();
            let rmsg = match chmsg {
                AnyChanMsg::Relay(r) => AnyRelayCell::decode(r.into_relay_body()).unwrap(),
                _ => panic!(),
            };
            let (streamid, rmsg) = rmsg.into_streamid_and_msg();
            assert!(matches!(rmsg, AnyRelayMsg::Begin(_)));
            // Reply with a connected cell...
            let connected = relaymsg::Connected::new_empty().into();
            sink.send(rmsg_to_ccmsg(streamid, connected)).await.unwrap();
            // Now read bytes from the stream until we have them all.
            let mut bytes_received = 0_usize;
            let mut cells_received = 0_usize;
            while bytes_received < n_to_send {
                // Read a data cell, and remember how much we got.
                let (id, chmsg) = rx.next().await.unwrap().into_circid_and_msg();
                assert_eq!(id, 128.into());

                let rmsg = match chmsg {
                    AnyChanMsg::Relay(r) => AnyRelayCell::decode(r.into_relay_body()).unwrap(),
                    _ => panic!(),
                };
                let (streamid2, rmsg) = rmsg.into_streamid_and_msg();
                assert_eq!(streamid2, streamid);
                if let AnyRelayMsg::Data(dat) = rmsg {
                    cells_received += 1;
                    bytes_received += dat.as_ref().len();
                } else {
                    panic!();
                }
            }

            (sink, streamid, cells_received, rx)
        };

        let (stream, (sink, streamid, cells_received, rx)) =
            futures::join!(begin_and_send_fut, receive_fut);

        (circ, stream, sink, streamid, cells_received, rx, sink2)
    }

    #[test]
    fn accept_valid_sendme() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            let (circ, _stream, mut sink, streamid, cells_received, _rx, _sink2) =
                setup_incoming_sendme_case(&rt, 300 * 498 + 3).await;

            assert_eq!(cells_received, 301);

            // Make sure that the circuit is indeed expecting the right sendmes
            {
                let (tx, rx) = oneshot::channel();
                circ.control
                    .unbounded_send(CtrlMsg::QuerySendWindow {
                        hop: 2.into(),
                        done: tx,
                    })
                    .unwrap();
                let (window, tags) = rx.await.unwrap().unwrap();
                assert_eq!(window, 1000 - 301);
                assert_eq!(tags.len(), 3);
                // 100
                assert_eq!(
                    tags[0],
                    sendme::CircTag::from(hex!("6400000000000000000000000000000000000000"))
                );
                // 200
                assert_eq!(
                    tags[1],
                    sendme::CircTag::from(hex!("c800000000000000000000000000000000000000"))
                );
                // 300
                assert_eq!(
                    tags[2],
                    sendme::CircTag::from(hex!("2c01000000000000000000000000000000000000"))
                );
            }

            let reply_with_sendme_fut = async move {
                // make and send a circuit-level sendme.
                let c_sendme =
                    relaymsg::Sendme::new_tag(hex!("6400000000000000000000000000000000000000"))
                        .into();
                sink.send(rmsg_to_ccmsg(0_u16, c_sendme)).await.unwrap();

                // Make and send a stream-level sendme.
                let s_sendme = relaymsg::Sendme::new_empty().into();
                sink.send(rmsg_to_ccmsg(streamid, s_sendme)).await.unwrap();

                sink
            };

            let _sink = reply_with_sendme_fut.await;

            // FIXME(eta): this is a hacky way of waiting for the reactor to run before doing the below
            //             query; should find some way to properly synchronize to avoid flakiness
            rt.sleep(Duration::from_millis(100)).await;
            // Now make sure that the circuit is still happy, and its
            // window is updated.
            {
                let (tx, rx) = oneshot::channel();
                circ.control
                    .unbounded_send(CtrlMsg::QuerySendWindow {
                        hop: 2.into(),
                        done: tx,
                    })
                    .unwrap();
                let (window, _tags) = rx.await.unwrap().unwrap();
                assert_eq!(window, 1000 - 201);
            }
        });
    }

    #[test]
    fn invalid_circ_sendme() {
        tor_rtcompat::test_with_all_runtimes!(|rt| async move {
            // Same setup as accept_valid_sendme() test above but try giving
            // a sendme with the wrong tag.

            let (circ, _stream, mut sink, _streamid, _cells_received, _rx, _sink2) =
                setup_incoming_sendme_case(&rt, 300 * 498 + 3).await;

            let reply_with_sendme_fut = async move {
                // make and send a circuit-level sendme with a bad tag.
                let c_sendme =
                    relaymsg::Sendme::new_tag(hex!("FFFF0000000000000000000000000000000000FF"))
                        .into();
                sink.send(rmsg_to_ccmsg(0_u16, c_sendme)).await.unwrap();
                sink
            };

            let _sink = reply_with_sendme_fut.await;

            let mut tries = 0;
            // FIXME(eta): we aren't testing the error message like we used to; however, we can at least
            //             check whether the reactor dies as a result of receiving invalid data.
            while !circ.control.is_closed() {
                // TODO: Don't sleep in tests.
                rt.sleep(Duration::from_millis(100)).await;
                tries += 1;
                if tries > 10 {
                    panic!("reactor continued running after invalid sendme");
                }
            }

            // TODO: check that the circuit is shut down too
        });
    }

    #[test]
    fn basic_params() {
        use super::CircParameters;
        let mut p = CircParameters::default();
        assert_eq!(p.initial_send_window(), 1000);
        assert!(p.extend_by_ed25519_id());

        assert!(p.set_initial_send_window(500).is_ok());
        p.set_extend_by_ed25519_id(false);
        assert_eq!(p.initial_send_window(), 500);
        assert!(!p.extend_by_ed25519_id());

        assert!(p.set_initial_send_window(9000).is_err());
        assert_eq!(p.initial_send_window(), 500);
    }
}