1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
//! Implements the HS ntor key exchange, as used in v3 onion services.
//!
//! The Ntor protocol of this section is specified in section
//! [NTOR-WITH-EXTRA-DATA] of rend-spec-v3.txt.
//!
//! The main difference between this HS Ntor handshake and the standard Ntor
//! handshake in ./ntor.rs is that this one allows each party to encrypt data
//! (without forward secrecy) after it sends the first message. This
//! opportunistic encryption property is used by clients in the onion service
//! protocol to encrypt introduction data in the INTRODUCE1 cell, and by
//! services to encrypt data in the RENDEZVOUS1 cell.
//!
//! # Status
//!
//! This module is a work in progress, and is not actually used anywhere yet
//! or tested: please expect the API to change.
//!
//! This module is available only when the `hs-common` feature is enabled.
//
// TODO hs: go through this code carefully and make sure that its APIs and
// behavior are still what we want.
// We want to use the exact variable names from the rend-spec-v3.txt proposal.
// This means that we allow variables to be named x (privkey) and X (pubkey).
#![allow(non_snake_case)]
use crate::crypto::handshake::KeyGenerator;
use crate::crypto::ll::kdf::{Kdf, ShakeKdf};
use crate::{Error, Result};
use tor_bytes::{Reader, SecretBuf, Writer};
use tor_llcrypto::d::Sha3_256;
use tor_llcrypto::pk::{curve25519, ed25519};
use tor_llcrypto::util::rand_compat::RngCompatExt;
use cipher::{KeyIvInit, StreamCipher};
use digest::Digest;
use generic_array::GenericArray;
use rand_core::{CryptoRng, RngCore};
use tor_error::into_internal;
use tor_llcrypto::cipher::aes::Aes256Ctr;
use zeroize::Zeroizing;
/// The ENC_KEY from the HS Ntor protocol
//
// TODO (nickm): Any move operations applied to this key could subvert the zeroizing.
type EncKey = Zeroizing<[u8; 32]>;
/// The MAC_KEY from the HS Ntor protocol
type MacKey = [u8; 32];
/// A generic 256-bit MAC tag
type MacTag = [u8; 32];
/// The AUTH_INPUT_MAC from the HS Ntor protocol
type AuthInputMac = MacTag;
/// The Service's subcredential
pub type Subcredential = [u8; 32]; // TODO hs: use tor-hscrypto version instead.
/// The key generator used by the HS ntor handshake. Implements the simple key
/// expansion protocol specified in section "Key expansion" of rend-spec-v3.txt .
pub struct HsNtorHkdfKeyGenerator {
/// Secret data derived from the handshake, used as input to HKDF
seed: SecretBuf,
}
impl HsNtorHkdfKeyGenerator {
/// Create a new key generator to expand a given seed
pub fn new(seed: SecretBuf) -> Self {
HsNtorHkdfKeyGenerator { seed }
}
}
impl KeyGenerator for HsNtorHkdfKeyGenerator {
/// Expand the seed into a keystream of 'keylen' size
fn expand(self, keylen: usize) -> Result<SecretBuf> {
ShakeKdf::new().derive(&self.seed[..], keylen)
}
}
/*********************** Client Side Code ************************************/
/// The input to enter the HS Ntor protocol as a client
#[derive(Clone)]
pub struct HsNtorClientInput {
/// Introduction point encryption key (aka B)
/// (found in the HS descriptor)
B: curve25519::PublicKey,
/// Introduction point authentication key (aka AUTH_KEY)
/// (found in the HS descriptor)
auth_key: ed25519::PublicKey,
/// Service subcredential
subcredential: Subcredential,
/// The plaintext that should be encrypted into ENCRYPTED_DATA It's
/// structure is irrelevant for this crate, but can be found in section
/// \[PROCESS_INTRO2\] of the spec
plaintext: Vec<u8>,
/// The data of the INTRODUCE1 cell from the beginning and up to the start
/// of the ENCRYPTED_DATA. It's used to compute the MAC at the end of the
/// INTRODUCE1 cell.
intro_cell_data: Vec<u8>,
}
impl HsNtorClientInput {
/// Create a new `HsNtorClientInput`
pub fn new(
B: curve25519::PublicKey,
auth_key: ed25519::PublicKey,
subcredential: Subcredential,
plaintext: Vec<u8>,
intro_cell_data: Vec<u8>,
) -> Self {
HsNtorClientInput {
B,
auth_key,
subcredential,
plaintext,
intro_cell_data,
}
}
}
/// Client state for an ntor handshake.
pub struct HsNtorClientState {
/// Keys received from our caller when we started the protocol. The rest of
/// the keys in this state structure have been created during the protocol.
proto_input: HsNtorClientInput,
/// The temporary curve25519 secret that we generated for this handshake.
x: curve25519::StaticSecret,
/// The corresponding private key
X: curve25519::PublicKey,
}
/// Encrypt the 'plaintext' using 'enc_key'. Then compute the intro cell MAC
/// using 'mac_key' and return (ciphertext, mac_tag).
fn encrypt_and_mac(
mut plaintext: Vec<u8>,
other_data: &[u8],
enc_key: &EncKey,
mac_key: MacKey,
) -> Result<(Vec<u8>, MacTag)> {
// Encrypt the introduction data using 'enc_key'
let zero_iv = GenericArray::default();
let mut cipher = Aes256Ctr::new(enc_key.as_ref().into(), &zero_iv);
cipher.apply_keystream(&mut plaintext);
let ciphertext = plaintext; // it's now encrypted
// Now staple the other INTRODUCE1 data right before the ciphertext to
// create the body of the MAC tag
let mut mac_body: Vec<u8> = Vec::new();
mac_body.extend(other_data);
mac_body.extend(&ciphertext);
let mac_tag = hs_ntor_mac(&mac_body, &mac_key)?;
Ok((ciphertext, mac_tag))
}
/// The client is about to make an INTRODUCE1 cell. Perform the first part of
/// the client handshake.
///
/// Return a state object containing the current progress of the handshake, and
/// the data that should be written in the INTRODUCE1 cell. The data that is
/// written is:
///
/// CLIENT_PK [PK_PUBKEY_LEN bytes]
/// ENCRYPTED_DATA [Padded to length of plaintext]
/// MAC [MAC_LEN bytes]
pub fn client_send_intro<R>(
rng: &mut R,
proto_input: &HsNtorClientInput,
) -> Result<(HsNtorClientState, Vec<u8>)>
where
R: RngCore + CryptoRng,
{
// Create client's ephemeral keys to be used for this handshake
let x = curve25519::StaticSecret::new(rng.rng_compat());
let X = curve25519::PublicKey::from(&x);
// Get EXP(B,x)
let bx = x.diffie_hellman(&proto_input.B);
// Compile our state structure
let state = HsNtorClientState {
proto_input: proto_input.clone(),
x,
X,
};
// Compute keys required to finish this part of the handshake
let (enc_key, mac_key) = get_introduce1_key_material(
&bx,
&proto_input.auth_key,
&X,
&proto_input.B,
&proto_input.subcredential,
)?;
let (ciphertext, mac_tag) = encrypt_and_mac(
proto_input.plaintext.clone(),
&proto_input.intro_cell_data,
&enc_key,
mac_key,
)?;
// Create the relevant parts of INTRO1
let mut response: Vec<u8> = Vec::new();
response
.write(&X)
.and_then(|_| response.write(&ciphertext))
.and_then(|_| response.write(&mac_tag))
.map_err(into_internal!("Can't encode hs-ntor client handshake."))?;
Ok((state, response))
}
/// The introduction has been completed and the service has replied with a
/// RENDEZVOUS1.
///
/// Handle it by computing and verifying the MAC, and if it's legit return a
/// key generator based on the result of the key exchange.
pub fn client_receive_rend<T>(state: &HsNtorClientState, msg: T) -> Result<HsNtorHkdfKeyGenerator>
where
T: AsRef<[u8]>,
{
// Extract the public key of the service from the message
let mut cur = Reader::from_slice(msg.as_ref());
let Y: curve25519::PublicKey = cur
.extract()
.map_err(|e| Error::from_bytes_err(e, "hs_ntor handshake"))?;
let mac_tag: MacTag = cur
.extract()
.map_err(|e| Error::from_bytes_err(e, "hs_ntor handshake"))?;
// Get EXP(Y,x) and EXP(B,x)
let xy = state.x.diffie_hellman(&Y);
let xb = state.x.diffie_hellman(&state.proto_input.B);
let (keygen, my_mac_tag) = get_rendezvous1_key_material(
&xy,
&xb,
&state.proto_input.auth_key,
&state.proto_input.B,
&state.X,
&Y,
)?;
// Validate the MAC!
if my_mac_tag != mac_tag {
return Err(Error::BadCircHandshakeAuth);
}
Ok(keygen)
}
/*********************** Server Side Code ************************************/
/// The input required to enter the HS Ntor protocol as a service
pub struct HsNtorServiceInput {
/// Introduction point encryption privkey
b: curve25519::StaticSecret,
/// Introduction point encryption pubkey
B: curve25519::PublicKey,
/// Introduction point authentication key (aka AUTH_KEY)
auth_key: ed25519::PublicKey,
/// Our subcredential
subcredential: Subcredential,
/// The data of the INTRODUCE1 cell from the beginning and up to the start
/// of the ENCRYPTED_DATA. Will be used to verify the MAC at the end of the
/// INTRODUCE1 cell.
intro_cell_data: Vec<u8>,
}
impl HsNtorServiceInput {
/// Create a new `HsNtorServiceInput`
pub fn new(
b: curve25519::StaticSecret,
B: curve25519::PublicKey,
auth_key: ed25519::PublicKey,
subcredential: Subcredential,
intro_cell_data: Vec<u8>,
) -> Self {
HsNtorServiceInput {
b,
B,
auth_key,
subcredential,
intro_cell_data,
}
}
}
/// Conduct the HS Ntor handshake as the service.
///
/// Return a key generator which is the result of the key exchange, the
/// RENDEZVOUS1 response to the client, and the introduction plaintext that we decrypted.
///
/// The response to the client is:
/// SERVER_PK Y [PK_PUBKEY_LEN bytes]
/// AUTH AUTH_INPUT_MAC [MAC_LEN bytes]
pub fn server_receive_intro<R, T>(
rng: &mut R,
proto_input: &HsNtorServiceInput,
msg: T,
) -> Result<(HsNtorHkdfKeyGenerator, Vec<u8>, Vec<u8>)>
where
R: RngCore + CryptoRng,
T: AsRef<[u8]>,
{
// Extract all the useful pieces from the message
let mut cur = Reader::from_slice(msg.as_ref());
let X: curve25519::PublicKey = cur
.extract()
.map_err(|e| Error::from_bytes_err(e, "hs ntor handshake"))?;
let remaining_bytes = cur.remaining();
let ciphertext = &mut cur
.take(remaining_bytes - 32)
.map_err(|e| Error::from_bytes_err(e, "hs ntor handshake"))?
.to_vec();
let mac_tag: MacTag = cur
.extract()
.map_err(|e| Error::from_bytes_err(e, "hs ntor handshake"))?;
// Now derive keys needed for handling the INTRO1 cell
let bx = proto_input.b.diffie_hellman(&X);
let (enc_key, mac_key) = get_introduce1_key_material(
&bx,
&proto_input.auth_key,
&X,
&proto_input.B,
&proto_input.subcredential,
)?;
// Now validate the MAC: Staple the previous INTRODUCE1 data along with the
// ciphertext to create the body of the MAC tag
let mut mac_body: Vec<u8> = Vec::new();
mac_body.extend(proto_input.intro_cell_data.clone());
mac_body.extend(ciphertext.clone());
let my_mac_tag = hs_ntor_mac(&mac_body, &mac_key)?;
if my_mac_tag != mac_tag {
return Err(Error::BadCircHandshakeAuth);
}
// Decrypt the ENCRYPTED_DATA from the intro cell
let zero_iv = GenericArray::default();
let mut cipher = Aes256Ctr::new(enc_key.as_ref().into(), &zero_iv);
cipher.apply_keystream(ciphertext);
let plaintext = ciphertext; // it's now decrypted
// Generate ephemeral keys for this handshake
let y = curve25519::EphemeralSecret::new(rng.rng_compat());
let Y = curve25519::PublicKey::from(&y);
// Compute EXP(X,y) and EXP(X,b)
let xy = y.diffie_hellman(&X);
let xb = proto_input.b.diffie_hellman(&X);
let (keygen, auth_input_mac) =
get_rendezvous1_key_material(&xy, &xb, &proto_input.auth_key, &proto_input.B, &X, &Y)?;
// Set up RENDEZVOUS1 reply to the client
let mut reply: Vec<u8> = Vec::new();
reply
.write(&Y)
.and_then(|_| reply.write(&auth_input_mac))
.map_err(into_internal!("Can't encode hs-ntor server handshake."))?;
Ok((keygen, reply, plaintext.clone()))
}
/*********************** Helper functions ************************************/
/// Implement the MAC function used as part of the HS ntor handshake:
/// MAC(k, m) is H(k_len | k | m) where k_len is htonll(len(k)).
fn hs_ntor_mac(key: &[u8], message: &[u8]) -> Result<MacTag> {
let k_len = key.len();
let mut d = Sha3_256::new();
d.update((k_len as u64).to_be_bytes());
d.update(key);
d.update(message);
let result = d.finalize();
result
.try_into()
.map_err(into_internal!("failed MAC computation"))
.map_err(Error::from)
}
/// Helper function: Compute the part of the HS ntor handshake that generates
/// key material for creating and handling INTRODUCE1 cells. Function used
/// by both client and service. Specifically, calculate the following:
///
/// ```pseudocode
/// intro_secret_hs_input = EXP(B,x) | AUTH_KEY | X | B | PROTOID
/// info = m_hsexpand | subcredential
/// hs_keys = KDF(intro_secret_hs_input | t_hsenc | info, S_KEY_LEN+MAC_LEN)
/// ENC_KEY = hs_keys[0:S_KEY_LEN]
/// MAC_KEY = hs_keys[S_KEY_LEN:S_KEY_LEN+MAC_KEY_LEN]
/// ```
///
/// Return (ENC_KEY, MAC_KEY).
fn get_introduce1_key_material(
bx: &curve25519::SharedSecret,
auth_key: &ed25519::PublicKey,
X: &curve25519::PublicKey,
B: &curve25519::PublicKey,
subcredential: &Subcredential,
) -> Result<(EncKey, MacKey)> {
let hs_ntor_protoid_constant = &b"tor-hs-ntor-curve25519-sha3-256-1"[..];
let hs_ntor_key_constant = &b"tor-hs-ntor-curve25519-sha3-256-1:hs_key_extract"[..];
let hs_ntor_expand_constant = &b"tor-hs-ntor-curve25519-sha3-256-1:hs_key_expand"[..];
// Construct hs_keys = KDF(intro_secret_hs_input | t_hsenc | info, S_KEY_LEN+MAC_LEN)
// Start by getting 'intro_secret_hs_input'
let mut secret_input = SecretBuf::new();
secret_input
.write(bx) // EXP(B,x)
.and_then(|_| secret_input.write(auth_key)) // AUTH_KEY
.and_then(|_| secret_input.write(X)) // X
.and_then(|_| secret_input.write(B)) // B
.and_then(|_| secret_input.write(hs_ntor_protoid_constant)) // PROTOID
// Now fold in the t_hsenc
.and_then(|_| secret_input.write(hs_ntor_key_constant))
// and fold in the 'info'
.and_then(|_| secret_input.write(hs_ntor_expand_constant))
.and_then(|_| secret_input.write(subcredential))
.map_err(into_internal!("Can't generate hs-ntor kdf input."))?;
let hs_keys = ShakeKdf::new().derive(&secret_input[..], 32 + 32)?;
// Extract the keys into arrays
let enc_key = Zeroizing::new(
hs_keys[0..32]
.try_into()
.map_err(into_internal!("converting enc_key"))
.map_err(Error::from)?,
);
let mac_key = hs_keys[32..64]
.try_into()
.map_err(into_internal!("converting mac_key"))
.map_err(Error::from)?;
Ok((enc_key, mac_key))
}
/// Helper function: Compute the last part of the HS ntor handshake which
/// derives key material necessary to create and handle RENDEZVOUS1
/// cells. Function used by both client and service. The actual calculations is
/// as follows:
///
/// rend_secret_hs_input = EXP(X,y) | EXP(X,b) | AUTH_KEY | B | X | Y | PROTOID
/// NTOR_KEY_SEED = MAC(rend_secret_hs_input, t_hsenc)
/// verify = MAC(rend_secret_hs_input, t_hsverify)
/// auth_input = verify | AUTH_KEY | B | Y | X | PROTOID | "Server"
/// AUTH_INPUT_MAC = MAC(auth_input, t_hsmac)
///
/// Return (keygen, AUTH_INPUT_MAC), where keygen is a key generator based on
/// NTOR_KEY_SEED.
fn get_rendezvous1_key_material(
xy: &curve25519::SharedSecret,
xb: &curve25519::SharedSecret,
auth_key: &ed25519::PublicKey,
B: &curve25519::PublicKey,
X: &curve25519::PublicKey,
Y: &curve25519::PublicKey,
) -> Result<(HsNtorHkdfKeyGenerator, AuthInputMac)> {
let hs_ntor_protoid_constant = &b"tor-hs-ntor-curve25519-sha3-256-1"[..];
let hs_ntor_mac_constant = &b"tor-hs-ntor-curve25519-sha3-256-1:hs_mac"[..];
let hs_ntor_verify_constant = &b"tor-hs-ntor-curve25519-sha3-256-1:hs_verify"[..];
let server_string_constant = &b"Server"[..];
let hs_ntor_expand_constant = &b"tor-hs-ntor-curve25519-sha3-256-1:hs_key_expand"[..];
let hs_ntor_key_constant = &b"tor-hs-ntor-curve25519-sha3-256-1:hs_key_extract"[..];
// Start with rend_secret_hs_input
let mut secret_input = SecretBuf::new();
secret_input
.write(xy) // EXP(X,y)
.and_then(|_| secret_input.write(xb)) // EXP(X,b)
.and_then(|_| secret_input.write(auth_key)) // AUTH_KEY
.and_then(|_| secret_input.write(B)) // B
.and_then(|_| secret_input.write(X)) // X
.and_then(|_| secret_input.write(Y)) // Y
.and_then(|_| secret_input.write(hs_ntor_protoid_constant)) // PROTOID
.map_err(into_internal!(
"Can't encode input to hs-ntor key derivation."
))?;
// Build NTOR_KEY_SEED and verify
let ntor_key_seed = hs_ntor_mac(&secret_input, hs_ntor_key_constant)?;
let verify = hs_ntor_mac(&secret_input, hs_ntor_verify_constant)?;
// Start building 'auth_input'
let mut auth_input = Vec::new();
auth_input
.write(&verify)
.and_then(|_| auth_input.write(auth_key)) // AUTH_KEY
.and_then(|_| auth_input.write(B)) // B
.and_then(|_| auth_input.write(Y)) // Y
.and_then(|_| auth_input.write(X)) // X
.and_then(|_| auth_input.write(hs_ntor_protoid_constant)) // PROTOID
.and_then(|_| auth_input.write(server_string_constant)) // "Server"
.map_err(into_internal!("Can't encode auth-input for hs-ntor."))?;
// Get AUTH_INPUT_MAC
let auth_input_mac = hs_ntor_mac(&auth_input, hs_ntor_mac_constant)?;
// Now finish up with the KDF construction
let mut kdf_seed = SecretBuf::new();
kdf_seed
.write(&ntor_key_seed)
.and_then(|_| kdf_seed.write(hs_ntor_expand_constant))
.map_err(into_internal!("Can't encode kdf-input for hs-ntor."))?;
let keygen = HsNtorHkdfKeyGenerator::new(kdf_seed);
Ok((keygen, auth_input_mac))
}
/*********************** Unit Tests ******************************************/
#[cfg(test)]
mod test {
// @@ begin test lint list maintained by maint/add_warning @@
#![allow(clippy::bool_assert_comparison)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::dbg_macro)]
#![allow(clippy::print_stderr)]
#![allow(clippy::print_stdout)]
#![allow(clippy::single_char_pattern)]
#![allow(clippy::unwrap_used)]
#![allow(clippy::unchecked_duration_subtraction)]
//! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
use super::*;
use hex_literal::hex;
use tor_basic_utils::test_rng::testing_rng;
#[test]
/// Basic HS Ntor test that does the handshake between client and service
/// and makes sure that the resulting keys and KDF is legit.
fn hs_ntor() -> Result<()> {
let mut rng = testing_rng().rng_compat();
// Let's initialize keys for the client (and the intro point)
let intro_b_privkey = curve25519::StaticSecret::new(&mut rng);
let intro_b_pubkey = curve25519::PublicKey::from(&intro_b_privkey);
let intro_auth_key_privkey = ed25519::SecretKey::generate(&mut rng);
let intro_auth_key_pubkey = ed25519::PublicKey::from(&intro_auth_key_privkey);
// Create keys for client and service
let client_keys = HsNtorClientInput::new(
intro_b_pubkey,
intro_auth_key_pubkey,
[5; 32],
vec![66; 10],
vec![42; 60],
);
let service_keys = HsNtorServiceInput::new(
intro_b_privkey,
intro_b_pubkey,
intro_auth_key_pubkey,
[5; 32],
vec![42; 60],
);
// Client: Sends an encrypted INTRODUCE1 cell
let (state, cmsg) = client_send_intro(&mut rng, &client_keys)?;
// Service: Decrypt INTRODUCE1 cell, and reply with RENDEZVOUS1 cell
let (skeygen, smsg, s_plaintext) = server_receive_intro(&mut rng, &service_keys, cmsg)?;
// Check that the plaintext received by the service is the one that the
// client sent
assert_eq!(s_plaintext, vec![66; 10]);
// Client: Receive RENDEZVOUS1 and create key material
let ckeygen = client_receive_rend(&state, smsg)?;
// Test that RENDEZVOUS1 key material match
let skeys = skeygen.expand(128)?;
let ckeys = ckeygen.expand(128)?;
assert_eq!(skeys, ckeys);
Ok(())
}
#[test]
/// Test vectors generated with hs_ntor_ref.py from little-t-tor.
fn ntor_mac() -> Result<()> {
let result = hs_ntor_mac("who".as_bytes(), b"knows?")?;
assert_eq!(
&result,
&hex!("5e7da329630fdaa3eab7498bb1dc625bbb9ca968f10392b6af92d51d5db17473")
);
let result = hs_ntor_mac("gone".as_bytes(), b"by")?;
assert_eq!(
&result,
&hex!("90071aabb06d3f7c777db41542f4790c7dd9e2e7b2b842f54c9c42bbdb37e9a0")
);
Ok(())
}
}