1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
//! Types and functions for onion service descriptor encryption.
//!
//! TODO hs: It's possible that this should move to tor-netdoc.
use tor_hscrypto::{pk::HsBlindId, RevisionCounter, Subcredential};
use tor_llcrypto::cipher::aes::Aes256Ctr as Cipher;
use tor_llcrypto::d::Sha3_256 as Hash;
use tor_llcrypto::d::Shake256 as KDF;
use arrayref::array_ref;
use cipher::{KeyIvInit, StreamCipher};
use digest::{ExtendableOutput, FixedOutput, Update, XofReader};
use rand::{CryptoRng, Rng};
use tor_llcrypto::pk::curve25519::PublicKey;
use tor_llcrypto::pk::curve25519::StaticSecret;
use tor_llcrypto::util::ct::CtByteArray;
use zeroize::Zeroizing as Z;
/// Parameters for encrypting or decrypting part of an onion service descriptor.
///
/// The algorithm is as described in section `[HS-DESC-ENCRYPTION-KEYS]` of
/// rend-spec-v3.txt
pub(super) struct HsDescEncryption<'a> {
/// First half of the "SECRET_DATA" field.
///
/// (See rend-spec v3 2.5.1.1 and 2.5.2.1.)
pub(super) blinded_id: &'a HsBlindId,
/// Second half of the "SECRET_DATA" field.
///
/// This is absent when handling the superencryption layer (2.5.1.1).
/// For the encryption layer, it is `descriptor_cookie` (2.5.2.1)
/// which is present when descriptor-encryption authentication via
/// `KP_hsc_desc_enc` is in use.
pub(super) desc_enc_nonce: Option<&'a HsDescEncNonce>,
/// The "subcredential" of the onion service.
pub(super) subcredential: &'a Subcredential,
/// The current revision of the onion service descriptor being decrypted.
pub(super) revision: RevisionCounter,
/// A "personalization string".
///
/// This is set to one of two constants depending on the layer being
/// decrypted.
pub(super) string_const: &'a [u8],
}
/// The length of a client ID.
pub(crate) const HS_DESC_CLIENT_ID_LEN: usize = 8;
/// The length of the the `AuthClient` IV.
pub(crate) const HS_DESC_IV_LEN: usize = 16;
/// The length of an `N_hs_desc_enc` nonce (also known as a "descriptor cookie").
pub(crate) const HS_DESC_ENC_NONCE_LEN: usize = 16;
/// A value used in deriving the encryption key for the inner (encryption) layer
/// of onion service encryption.
///
/// This is `N_hs_desc_enc` in the spec, where sometimes we also call it a
/// "descriptor cookie".
#[derive(derive_more::AsRef, derive_more::From)]
pub(super) struct HsDescEncNonce([u8; HS_DESC_ENC_NONCE_LEN]);
/// Length of our cryptographic salt.
const SALT_LEN: usize = 16;
/// Length of our ersatz MAC.
const MAC_LEN: usize = 32;
/// An instance of our cryptographic salt.
type Salt = [u8; SALT_LEN];
impl<'a> HsDescEncryption<'a> {
/// Length of our MAC key.
const MAC_KEY_LEN: usize = 32;
/// Length of the cipher key that we use.
const CIPHER_KEY_LEN: usize = 32;
/// Length of our cipher's IV.
const IV_LEN: usize = 16;
/// Encrypt a given bytestring using these encryption parameters.
pub(super) fn encrypt<R: Rng + CryptoRng>(&self, rng: &mut R, data: &[u8]) -> Vec<u8> {
let output_len = data.len() + SALT_LEN + MAC_LEN;
let mut output = Vec::with_capacity(output_len);
let salt: [u8; SALT_LEN] = rng.gen();
let (mut cipher, mut mac) = self.init(&salt);
output.extend_from_slice(&salt[..]);
output.extend_from_slice(data);
cipher.apply_keystream(&mut output[SALT_LEN..]);
mac.update(&output[SALT_LEN..]);
let mut mac_val = Default::default();
let mac = mac.finalize_into(&mut mac_val);
output.extend_from_slice(&mac_val);
debug_assert_eq!(output.len(), output_len);
output
}
/// Decrypt a given bytestring that was first encrypted using these
/// encryption parameters.
pub(super) fn decrypt(&self, data: &[u8]) -> Result<Vec<u8>, DecryptionError> {
if data.len() < SALT_LEN + MAC_LEN {
return Err(DecryptionError::default());
}
let msg_len = data.len() - SALT_LEN - MAC_LEN;
let salt = *array_ref![data, 0, SALT_LEN];
let ciphertext = &data[SALT_LEN..(SALT_LEN + msg_len)];
let expected_mac = CtByteArray::from(*array_ref![data, SALT_LEN + msg_len, MAC_LEN]);
let (mut cipher, mut mac) = self.init(&salt);
// check mac.
mac.update(ciphertext);
let mut received_mac = CtByteArray::from([0_u8; MAC_LEN]);
mac.finalize_into(received_mac.as_mut().into());
if received_mac != expected_mac {
return Err(DecryptionError::default());
}
let mut decrypted = ciphertext.to_vec();
cipher.apply_keystream(&mut decrypted[..]);
Ok(decrypted)
}
/// Return the cryptographic objects that are used for en/decrypting and
/// authenticating a HsDesc layer, given these parameters and a provided
/// salt.
///
/// Calculates `SECRET_KEY` and `SECRET_IV` (as `Cipher`) and `MAC_KEY` (as `Hash`)
/// from rend-spec-v3 2.5.3 (`[HS-DESC-ENCRYPTION-KEYS]`).
///
/// `Hash` is the required intermediate value in the calculation of `D_MAC`:
/// It is in the state just after the `SALT` has been added;
/// the ciphertext should be added, and then it should be finalized.
fn init(&self, salt: &[u8; 16]) -> (Cipher, Hash) {
let mut key_stream = self.get_kdf(salt).finalize_xof();
let mut key = Z::new([0_u8; Self::CIPHER_KEY_LEN]);
let mut iv = Z::new([0_u8; Self::IV_LEN]);
let mut mac_key = Z::new([0_u8; Self::MAC_KEY_LEN]); // TODO HS conjectural!
key_stream.read(&mut key[..]);
key_stream.read(&mut iv[..]);
key_stream.read(&mut mac_key[..]);
let cipher = Cipher::new(key.as_ref().into(), iv.as_ref().into());
let mut mac = Hash::default();
mac.update(&(Self::MAC_KEY_LEN as u64).to_be_bytes());
mac.update(&mac_key[..]);
mac.update(&(salt.len() as u64).to_be_bytes());
mac.update(&salt[..]);
(cipher, mac)
}
/// Return a KDF that can yield the keys to be used for encryption with
/// these key parameters.
///
/// Calculates `keys` from rend-spec-v3 2.5.3 (`[HS-DESC-ENCRYPTION-KEYS]`)
/// as required for the two instantiations of `HS-DESC-ENCRYPTION-KEYS` in
/// 2.5.1.1 ("First layer encryption logic") and 2.5.2.1 ("Second layer
/// encryption logic").
fn get_kdf(&self, salt: &[u8; 16]) -> KDF {
let mut kdf = KDF::default();
// secret_input = SECRET_DATA | N_hs_subcred | INT_8(revision_counter)
//
// (SECRET_DATA is always KP_blind_id (2.5.1.1), or KP_blind_id | N_hs_desc_nonce) (2.5.2.1).
kdf.update(self.blinded_id.as_ref());
if let Some(cookie) = self.desc_enc_nonce {
kdf.update(cookie.as_ref());
}
kdf.update(self.subcredential.as_ref());
kdf.update(&u64::from(self.revision).to_be_bytes());
// keys = KDF(secret_input | salt | STRING_CONSTANT, S_KEY_LEN + S_IV_LEN + MAC_KEY_LEN)
kdf.update(salt);
kdf.update(self.string_const);
kdf
}
}
/// An error that occurs when decrypting an onion service descriptor.
///
/// This error is deliberately uninformative, to avoid side channels.
#[non_exhaustive]
#[derive(Clone, Debug, Default, thiserror::Error)]
#[error("Unable to decrypt onion service descriptor.")]
pub struct DecryptionError {}
/// Create the CLIENT-ID and COOKIE-KEY required for hidden service client auth.
///
/// This is used by HS clients to decrypt the descriptor cookie from the onion service descriptor,
/// and by HS services to build the client-auth sections of descriptors.
///
/// Section 2.5.1.2. of rend-spec-v3 says:
/// ```text
/// SECRET_SEED = x25519(hs_y, client_X)
/// = x25519(client_y, hs_X)
/// KEYS = KDF(N_hs_subcred | SECRET_SEED, 40)
/// CLIENT-ID = first 8 bytes of KEYS
/// COOKIE-KEY = last 32 bytes of KEYS
///
/// Where:
/// hs_{X,y} = K{P,S}_hss_desc_enc
/// client_{X,Y} = K{P,S}_hsc_desc_enc
/// ```
pub(crate) fn build_descriptor_cookie_key(
our_secret_key: &StaticSecret,
their_public_key: &PublicKey,
subcredential: &Subcredential,
) -> (CtByteArray<8>, [u8; 32]) {
let secret_seed = our_secret_key.diffie_hellman(their_public_key);
let mut kdf = KDF::default();
kdf.update(subcredential.as_ref());
kdf.update(secret_seed.as_bytes());
let mut keys = kdf.finalize_xof();
let mut client_id = CtByteArray::from([0_u8; 8]);
let mut cookie_key = [0_u8; 32];
keys.read(client_id.as_mut());
keys.read(&mut cookie_key);
(client_id, cookie_key)
}
#[cfg(test)]
mod test {
// @@ begin test lint list maintained by maint/add_warning @@
#![allow(clippy::bool_assert_comparison)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::dbg_macro)]
#![allow(clippy::print_stderr)]
#![allow(clippy::print_stdout)]
#![allow(clippy::single_char_pattern)]
#![allow(clippy::unwrap_used)]
#![allow(clippy::unchecked_duration_subtraction)]
//! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
use super::*;
use tor_basic_utils::test_rng::testing_rng;
#[test]
fn roundtrip_basics() {
let blinded_id = [7; 32].into();
let subcredential = [11; 32].into();
let revision = 13.into();
let string_const = "greetings puny humans";
let params = HsDescEncryption {
blinded_id: &blinded_id,
desc_enc_nonce: None,
subcredential: &subcredential,
revision,
string_const: string_const.as_bytes(),
};
let mut rng = testing_rng();
let bigmsg: Vec<u8> = (1..123).cycle().take(1021).collect();
for message in [&b""[..], &b"hello world"[..], &bigmsg[..]] {
let mut encrypted = params.encrypt(&mut rng, message);
assert_eq!(encrypted.len(), message.len() + 48);
let decrypted = params.decrypt(&encrypted[..]).unwrap();
assert_eq!(message, &decrypted);
// Make sure we can't decrypt a partial input.
let decryption_err = params.decrypt(&encrypted[..encrypted.len() - 1]);
assert!(decryption_err.is_err());
// Frob a point in the encrypted form and ensure we won't decrypt.
encrypted[7] ^= 3;
let decryption_err = params.decrypt(&encrypted[..]);
assert!(decryption_err.is_err());
}
}
#[test]
fn too_short() {
let blinded_id = [7; 32].into();
let subcredential = [11; 32].into();
let revision = 13.into();
let string_const = "greetings puny humans";
let params = HsDescEncryption {
blinded_id: &blinded_id,
desc_enc_nonce: None,
subcredential: &subcredential,
revision,
string_const: string_const.as_bytes(),
};
assert!(params.decrypt(b"").is_err());
assert!(params.decrypt(&[0_u8; 47]).is_err());
}
}