tor_netdir/
lib.rs

1#![cfg_attr(docsrs, feature(doc_auto_cfg, doc_cfg))]
2#![doc = include_str!("../README.md")]
3// @@ begin lint list maintained by maint/add_warning @@
4#![allow(renamed_and_removed_lints)] // @@REMOVE_WHEN(ci_arti_stable)
5#![allow(unknown_lints)] // @@REMOVE_WHEN(ci_arti_nightly)
6#![warn(missing_docs)]
7#![warn(noop_method_call)]
8#![warn(unreachable_pub)]
9#![warn(clippy::all)]
10#![deny(clippy::await_holding_lock)]
11#![deny(clippy::cargo_common_metadata)]
12#![deny(clippy::cast_lossless)]
13#![deny(clippy::checked_conversions)]
14#![warn(clippy::cognitive_complexity)]
15#![deny(clippy::debug_assert_with_mut_call)]
16#![deny(clippy::exhaustive_enums)]
17#![deny(clippy::exhaustive_structs)]
18#![deny(clippy::expl_impl_clone_on_copy)]
19#![deny(clippy::fallible_impl_from)]
20#![deny(clippy::implicit_clone)]
21#![deny(clippy::large_stack_arrays)]
22#![warn(clippy::manual_ok_or)]
23#![deny(clippy::missing_docs_in_private_items)]
24#![warn(clippy::needless_borrow)]
25#![warn(clippy::needless_pass_by_value)]
26#![warn(clippy::option_option)]
27#![deny(clippy::print_stderr)]
28#![deny(clippy::print_stdout)]
29#![warn(clippy::rc_buffer)]
30#![deny(clippy::ref_option_ref)]
31#![warn(clippy::semicolon_if_nothing_returned)]
32#![warn(clippy::trait_duplication_in_bounds)]
33#![deny(clippy::unchecked_duration_subtraction)]
34#![deny(clippy::unnecessary_wraps)]
35#![warn(clippy::unseparated_literal_suffix)]
36#![deny(clippy::unwrap_used)]
37#![deny(clippy::mod_module_files)]
38#![allow(clippy::let_unit_value)] // This can reasonably be done for explicitness
39#![allow(clippy::uninlined_format_args)]
40#![allow(clippy::significant_drop_in_scrutinee)] // arti/-/merge_requests/588/#note_2812945
41#![allow(clippy::result_large_err)] // temporary workaround for arti#587
42#![allow(clippy::needless_raw_string_hashes)] // complained-about code is fine, often best
43#![allow(clippy::needless_lifetimes)] // See arti#1765
44#![allow(mismatched_lifetime_syntaxes)] // temporary workaround for arti#2060
45//! <!-- @@ end lint list maintained by maint/add_warning @@ -->
46
47pub mod details;
48mod err;
49#[cfg(feature = "hs-common")]
50mod hsdir_params;
51#[cfg(feature = "hs-common")]
52mod hsdir_ring;
53pub mod params;
54mod weight;
55
56#[cfg(any(test, feature = "testing"))]
57pub mod testnet;
58#[cfg(feature = "testing")]
59pub mod testprovider;
60
61use async_trait::async_trait;
62#[cfg(feature = "hs-service")]
63use itertools::chain;
64use static_assertions::const_assert;
65use tor_error::warn_report;
66use tor_linkspec::{
67    ChanTarget, DirectChanMethodsHelper, HasAddrs, HasRelayIds, RelayIdRef, RelayIdType,
68};
69use tor_llcrypto as ll;
70use tor_llcrypto::pk::{ed25519::Ed25519Identity, rsa::RsaIdentity};
71use tor_netdoc::doc::microdesc::{MdDigest, Microdesc};
72use tor_netdoc::doc::netstatus::{self, MdConsensus, MdRouterStatus};
73#[cfg(feature = "hs-common")]
74use {hsdir_ring::HsDirRing, std::iter};
75
76use derive_more::{From, Into};
77use futures::{StreamExt, stream::BoxStream};
78use num_enum::{IntoPrimitive, TryFromPrimitive};
79use rand::seq::{IndexedRandom as _, SliceRandom as _, WeightError};
80use serde::Deserialize;
81use std::collections::HashMap;
82use std::net::IpAddr;
83use std::ops::Deref;
84use std::sync::Arc;
85use std::time::SystemTime;
86use strum::{EnumCount, EnumIter};
87use tracing::warn;
88use typed_index_collections::{TiSlice, TiVec};
89
90#[cfg(feature = "hs-common")]
91use {
92    itertools::Itertools,
93    std::collections::HashSet,
94    tor_error::{Bug, internal},
95    tor_hscrypto::{pk::HsBlindId, time::TimePeriod},
96};
97
98pub use err::Error;
99pub use weight::WeightRole;
100/// A Result using the Error type from the tor-netdir crate
101pub type Result<T> = std::result::Result<T, Error>;
102
103#[cfg(feature = "hs-common")]
104pub use err::OnionDirLookupError;
105
106use params::NetParameters;
107#[cfg(feature = "geoip")]
108use tor_geoip::{CountryCode, GeoipDb, HasCountryCode};
109
110#[cfg(feature = "hs-common")]
111#[cfg_attr(docsrs, doc(cfg(feature = "hs-common")))]
112pub use hsdir_params::HsDirParams;
113
114/// Index into the consensus relays
115///
116/// This is an index into the list of relays returned by
117/// [`.c_relays()`](ConsensusRelays::c_relays)
118/// (on the corresponding consensus or netdir).
119///
120/// This is just a `usize` inside, but using a newtype prevents getting a relay index
121/// confused with other kinds of slice indices or counts.
122///
123/// If you are in a part of the code which needs to work with multiple consensuses,
124/// the typechecking cannot tell if you try to index into the wrong consensus.
125#[derive(Debug, From, Into, Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash)]
126pub(crate) struct RouterStatusIdx(usize);
127
128/// Extension trait to provide index-type-safe `.c_relays()` method
129//
130// TODO: Really it would be better to have MdConsensns::relays() return TiSlice,
131// but that would be an API break there.
132pub(crate) trait ConsensusRelays {
133    /// Obtain the list of relays in the consensus
134    //
135    fn c_relays(&self) -> &TiSlice<RouterStatusIdx, MdRouterStatus>;
136}
137impl ConsensusRelays for MdConsensus {
138    fn c_relays(&self) -> &TiSlice<RouterStatusIdx, MdRouterStatus> {
139        TiSlice::from_ref(MdConsensus::relays(self))
140    }
141}
142impl ConsensusRelays for NetDir {
143    fn c_relays(&self) -> &TiSlice<RouterStatusIdx, MdRouterStatus> {
144        self.consensus.c_relays()
145    }
146}
147
148/// Configuration for determining when two relays have addresses "too close" in
149/// the network.
150///
151/// Used by `Relay::low_level_details().in_same_subnet()`.
152#[derive(Deserialize, Debug, Clone, Copy, Eq, PartialEq)]
153#[serde(deny_unknown_fields)]
154pub struct SubnetConfig {
155    /// Consider IPv4 nodes in the same /x to be the same family.
156    ///
157    /// If this value is 0, all nodes with IPv4 addresses will be in the
158    /// same family.  If this value is above 32, then no nodes will be
159    /// placed im the same family based on their IPv4 addresses.
160    subnets_family_v4: u8,
161    /// Consider IPv6 nodes in the same /x to be the same family.
162    ///
163    /// If this value is 0, all nodes with IPv6 addresses will be in the
164    /// same family.  If this value is above 128, then no nodes will be
165    /// placed im the same family based on their IPv6 addresses.
166    subnets_family_v6: u8,
167}
168
169impl Default for SubnetConfig {
170    fn default() -> Self {
171        Self::new(16, 32)
172    }
173}
174
175impl SubnetConfig {
176    /// Construct a new SubnetConfig from a pair of bit prefix lengths.
177    ///
178    /// The values are clamped to the appropriate ranges if they are
179    /// out-of-bounds.
180    pub fn new(subnets_family_v4: u8, subnets_family_v6: u8) -> Self {
181        Self {
182            subnets_family_v4,
183            subnets_family_v6,
184        }
185    }
186
187    /// Construct a new SubnetConfig such that addresses are not in the same
188    /// family with anything--not even with themselves.
189    pub fn no_addresses_match() -> SubnetConfig {
190        SubnetConfig {
191            subnets_family_v4: 33,
192            subnets_family_v6: 129,
193        }
194    }
195
196    /// Return true if the two addresses in the same subnet, according to this
197    /// configuration.
198    pub fn addrs_in_same_subnet(&self, a: &IpAddr, b: &IpAddr) -> bool {
199        match (a, b) {
200            (IpAddr::V4(a), IpAddr::V4(b)) => {
201                let bits = self.subnets_family_v4;
202                if bits > 32 {
203                    return false;
204                }
205                let a = u32::from_be_bytes(a.octets());
206                let b = u32::from_be_bytes(b.octets());
207                (a >> (32 - bits)) == (b >> (32 - bits))
208            }
209            (IpAddr::V6(a), IpAddr::V6(b)) => {
210                let bits = self.subnets_family_v6;
211                if bits > 128 {
212                    return false;
213                }
214                let a = u128::from_be_bytes(a.octets());
215                let b = u128::from_be_bytes(b.octets());
216                (a >> (128 - bits)) == (b >> (128 - bits))
217            }
218            _ => false,
219        }
220    }
221
222    /// Return true if any of the addresses in `a` shares a subnet with any of
223    /// the addresses in `b`, according to this configuration.
224    pub fn any_addrs_in_same_subnet<T, U>(&self, a: &T, b: &U) -> bool
225    where
226        T: tor_linkspec::HasAddrs,
227        U: tor_linkspec::HasAddrs,
228    {
229        a.addrs().iter().any(|aa| {
230            b.addrs()
231                .iter()
232                .any(|bb| self.addrs_in_same_subnet(&aa.ip(), &bb.ip()))
233        })
234    }
235
236    /// Return a new subnet configuration that is the union of `self` and
237    /// `other`.
238    ///
239    /// That is, return a subnet configuration that puts all addresses in the
240    /// same subnet if and only if at least one of `self` and `other` would put
241    /// them in the same subnet.
242    pub fn union(&self, other: &Self) -> Self {
243        use std::cmp::min;
244        Self {
245            subnets_family_v4: min(self.subnets_family_v4, other.subnets_family_v4),
246            subnets_family_v6: min(self.subnets_family_v6, other.subnets_family_v6),
247        }
248    }
249}
250
251/// Configuration for which listed family information to use when deciding
252/// whether relays belong to the same family.
253///
254/// Derived from network parameters.
255#[derive(Clone, Copy, Debug)]
256pub struct FamilyRules {
257    /// If true, we use family information from lists of family members.
258    use_family_lists: bool,
259    /// If true, we use family information from lists of family IDs and from family certs.
260    use_family_ids: bool,
261}
262
263impl<'a> From<&'a NetParameters> for FamilyRules {
264    fn from(params: &'a NetParameters) -> Self {
265        FamilyRules {
266            use_family_lists: bool::from(params.use_family_lists),
267            use_family_ids: bool::from(params.use_family_ids),
268        }
269    }
270}
271
272impl FamilyRules {
273    /// Return a `FamilyRules` that will use all recognized kinds of family information.
274    pub fn all_family_info() -> Self {
275        Self {
276            use_family_lists: true,
277            use_family_ids: true,
278        }
279    }
280
281    /// Return a `FamilyRules` that will ignore all family information declared by relays.
282    pub fn ignore_declared_families() -> Self {
283        Self {
284            use_family_lists: false,
285            use_family_ids: false,
286        }
287    }
288
289    /// Configure this `FamilyRules` to use (or not use) family information from
290    /// lists of family members.
291    pub fn use_family_lists(&mut self, val: bool) -> &mut Self {
292        self.use_family_lists = val;
293        self
294    }
295
296    /// Configure this `FamilyRules` to use (or not use) family information from
297    /// family IDs and family certs.
298    pub fn use_family_ids(&mut self, val: bool) -> &mut Self {
299        self.use_family_ids = val;
300        self
301    }
302
303    /// Return a `FamilyRules` that will look at every source of information
304    /// requested by `self` or by `other`.
305    pub fn union(&self, other: &Self) -> Self {
306        Self {
307            use_family_lists: self.use_family_lists || other.use_family_lists,
308            use_family_ids: self.use_family_ids || other.use_family_ids,
309        }
310    }
311}
312
313/// An opaque type representing the weight with which a relay or set of
314/// relays will be selected for a given role.
315///
316/// Most users should ignore this type, and just use pick_relay instead.
317#[derive(
318    Copy,
319    Clone,
320    Debug,
321    derive_more::Add,
322    derive_more::Sum,
323    derive_more::AddAssign,
324    Eq,
325    PartialEq,
326    Ord,
327    PartialOrd,
328)]
329pub struct RelayWeight(u64);
330
331impl RelayWeight {
332    /// Try to divide this weight by `rhs`.
333    ///
334    /// Return a ratio on success, or None on division-by-zero.
335    pub fn checked_div(&self, rhs: RelayWeight) -> Option<f64> {
336        if rhs.0 == 0 {
337            None
338        } else {
339            Some((self.0 as f64) / (rhs.0 as f64))
340        }
341    }
342
343    /// Compute a ratio `frac` of this weight.
344    ///
345    /// Return None if frac is less than zero, since negative weights
346    /// are impossible.
347    pub fn ratio(&self, frac: f64) -> Option<RelayWeight> {
348        let product = (self.0 as f64) * frac;
349        if product >= 0.0 && product.is_finite() {
350            Some(RelayWeight(product as u64))
351        } else {
352            None
353        }
354    }
355}
356
357impl From<u64> for RelayWeight {
358    fn from(val: u64) -> Self {
359        RelayWeight(val)
360    }
361}
362
363/// An operation for which we might be requesting a hidden service directory.
364#[derive(Copy, Clone, Debug, PartialEq)]
365// TODO: make this pub(crate) once NetDir::hs_dirs is removed
366#[non_exhaustive]
367pub enum HsDirOp {
368    /// Uploading an onion service descriptor.
369    #[cfg(feature = "hs-service")]
370    Upload,
371    /// Downloading an onion service descriptor.
372    Download,
373}
374
375/// A view of the Tor directory, suitable for use in building circuits.
376///
377/// Abstractly, a [`NetDir`] is a set of usable public [`Relay`]s, each of which
378/// has its own properties, identity, and correct weighted probability for use
379/// under different circumstances.
380///
381/// A [`NetDir`] is constructed by making a [`PartialNetDir`] from a consensus
382/// document, and then adding enough microdescriptors to that `PartialNetDir` so
383/// that it can be used to build paths. (Thus, if you have a NetDir, it is
384/// definitely adequate to build paths.)
385///
386/// # "Usable" relays
387///
388/// Many methods on NetDir are defined in terms of <a name="usable">"Usable"</a> relays.  Unless
389/// otherwise stated, a relay is "usable" if it is listed in the consensus,
390/// if we have full directory information for that relay (including a
391/// microdescriptor), and if that relay does not have any flags indicating that
392/// we should never use it. (Currently, `NoEdConsensus` is the only such flag.)
393///
394/// # Limitations
395///
396/// The current NetDir implementation assumes fairly strongly that every relay
397/// has an Ed25519 identity and an RSA identity, that the consensus is indexed
398/// by RSA identities, and that the Ed25519 identities are stored in
399/// microdescriptors.
400///
401/// If these assumptions someday change, then we'll have to revise the
402/// implementation.
403#[derive(Debug, Clone)]
404pub struct NetDir {
405    /// A microdescriptor consensus that lists the members of the network,
406    /// and maps each one to a 'microdescriptor' that has more information
407    /// about it
408    consensus: Arc<MdConsensus>,
409    /// A map from keys to integer values, distributed in the consensus,
410    /// and clamped to certain defaults.
411    params: NetParameters,
412    /// Map from routerstatus index, to that routerstatus's microdescriptor (if we have one.)
413    mds: TiVec<RouterStatusIdx, Option<Arc<Microdesc>>>,
414    /// Map from SHA256 of _missing_ microdescriptors to the index of their
415    /// corresponding routerstatus.
416    rsidx_by_missing: HashMap<MdDigest, RouterStatusIdx>,
417    /// Map from ed25519 identity to index of the routerstatus.
418    ///
419    /// Note that we don't know the ed25519 identity of a relay until
420    /// we get the microdescriptor for it, so this won't be filled in
421    /// until we get the microdescriptors.
422    ///
423    /// # Implementation note
424    ///
425    /// For this field, and for `rsidx_by_rsa`,
426    /// it might be cool to have references instead.
427    /// But that would make this into a self-referential structure,
428    /// which isn't possible in safe rust.
429    rsidx_by_ed: HashMap<Ed25519Identity, RouterStatusIdx>,
430    /// Map from RSA identity to index of the routerstatus.
431    ///
432    /// This is constructed at the same time as the NetDir object, so it
433    /// can be immutable.
434    rsidx_by_rsa: Arc<HashMap<RsaIdentity, RouterStatusIdx>>,
435
436    /// Hash ring(s) describing the onion service directory.
437    ///
438    /// This is empty in a PartialNetDir, and is filled in before the NetDir is
439    /// built.
440    //
441    // TODO hs: It is ugly to have this exist in a partially constructed state
442    // in a PartialNetDir.
443    // Ideally, a PartialNetDir would contain only an HsDirs<HsDirParams>,
444    // or perhaps nothing at all, here.
445    #[cfg(feature = "hs-common")]
446    hsdir_rings: Arc<HsDirs<HsDirRing>>,
447
448    /// Weight values to apply to a given relay when deciding how frequently
449    /// to choose it for a given role.
450    weights: weight::WeightSet,
451
452    #[cfg(feature = "geoip")]
453    /// Country codes for each router in our consensus.
454    ///
455    /// This is indexed by the `RouterStatusIdx` (i.e. a router idx of zero has
456    /// the country code at position zero in this array).
457    country_codes: Vec<Option<CountryCode>>,
458}
459
460/// Collection of hidden service directories (or parameters for them)
461///
462/// In [`NetDir`] this is used to store the actual hash rings.
463/// (But, in a NetDir in a [`PartialNetDir`], it contains [`HsDirRing`]s
464/// where only the `params` are populated, and the `ring` is empty.)
465///
466/// This same generic type is used as the return type from
467/// [`HsDirParams::compute`](HsDirParams::compute),
468/// where it contains the *parameters* for the primary and secondary rings.
469#[derive(Debug, Clone)]
470#[cfg(feature = "hs-common")]
471pub(crate) struct HsDirs<D> {
472    /// The current ring
473    ///
474    /// It corresponds to the time period containing the `valid-after` time in
475    /// the consensus. Its SRV is whatever SRV was most current at the time when
476    /// that time period began.
477    ///
478    /// This is the hash ring that we should use whenever we are fetching an
479    /// onion service descriptor.
480    current: D,
481
482    /// Secondary rings (based on the parameters for the previous and next time periods)
483    ///
484    /// Onion services upload to positions on these ring as well, based on how
485    /// far into the current time period this directory is, so that
486    /// not-synchronized clients can still find their descriptor.
487    ///
488    /// Note that with the current (2023) network parameters, with
489    /// `hsdir_interval = SRV lifetime = 24 hours` at most one of these
490    /// secondary rings will be active at a time.  We have two here in order
491    /// to conform with a more flexible regime in proposal 342.
492    //
493    // TODO: hs clients never need this; so I've made it not-present for them.
494    // But does that risk too much with respect to side channels?
495    //
496    // TODO: Perhaps we should refactor this so that it is clear that these
497    // are immutable?  On the other hand, the documentation for this type
498    // declares that it is immutable, so we are likely okay.
499    //
500    // TODO: this `Vec` is only ever 0,1,2 elements.
501    // Maybe it should be an ArrayVec or something.
502    #[cfg(feature = "hs-service")]
503    secondary: Vec<D>,
504}
505
506#[cfg(feature = "hs-common")]
507impl<D> HsDirs<D> {
508    /// Convert an `HsDirs<D>` to `HsDirs<D2>` by mapping each contained `D`
509    pub(crate) fn map<D2>(self, mut f: impl FnMut(D) -> D2) -> HsDirs<D2> {
510        HsDirs {
511            current: f(self.current),
512            #[cfg(feature = "hs-service")]
513            secondary: self.secondary.into_iter().map(f).collect(),
514        }
515    }
516
517    /// Iterate over some of the contained hsdirs, according to `secondary`
518    ///
519    /// The current ring is always included.
520    /// Secondary rings are included iff `secondary` and the `hs-service` feature is enabled.
521    fn iter_filter_secondary(&self, secondary: bool) -> impl Iterator<Item = &D> {
522        let i = iter::once(&self.current);
523
524        // With "hs-service" disabled, there are no secondary rings,
525        // so we don't care.
526        let _ = secondary;
527
528        #[cfg(feature = "hs-service")]
529        let i = chain!(i, self.secondary.iter().filter(move |_| secondary));
530
531        i
532    }
533
534    /// Iterate over all the contained hsdirs
535    pub(crate) fn iter(&self) -> impl Iterator<Item = &D> {
536        self.iter_filter_secondary(true)
537    }
538
539    /// Iterate over the hsdirs relevant for `op`
540    pub(crate) fn iter_for_op(&self, op: HsDirOp) -> impl Iterator<Item = &D> {
541        self.iter_filter_secondary(match op {
542            #[cfg(feature = "hs-service")]
543            HsDirOp::Upload => true,
544            HsDirOp::Download => false,
545        })
546    }
547}
548
549/// An event that a [`NetDirProvider`] can broadcast to indicate that a change in
550/// the status of its directory.
551#[derive(
552    Debug, Clone, Copy, PartialEq, Eq, EnumIter, EnumCount, IntoPrimitive, TryFromPrimitive,
553)]
554#[non_exhaustive]
555#[repr(u16)]
556pub enum DirEvent {
557    /// A new consensus has been received, and has enough information to be
558    /// used.
559    ///
560    /// This event is also broadcast when a new set of consensus parameters is
561    /// available, even if that set of parameters comes from a configuration
562    /// change rather than from the latest consensus.
563    NewConsensus,
564
565    /// New descriptors have been received for the current consensus.
566    ///
567    /// (This event is _not_ broadcast when receiving new descriptors for a
568    /// consensus which is not yet ready to replace the current consensus.)
569    NewDescriptors,
570
571    /// We have received updated recommendations and requirements
572    /// for which subprotocols we should have to use the network.
573    NewProtocolRecommendation,
574}
575
576/// The network directory provider is shutting down without giving us the
577/// netdir we asked for.
578#[derive(Clone, Copy, Debug, thiserror::Error)]
579#[error("Network directory provider is shutting down")]
580#[non_exhaustive]
581pub struct NetdirProviderShutdown;
582
583impl tor_error::HasKind for NetdirProviderShutdown {
584    fn kind(&self) -> tor_error::ErrorKind {
585        tor_error::ErrorKind::ArtiShuttingDown
586    }
587}
588
589/// How "timely" must a network directory be?
590///
591/// This enum is used as an argument when requesting a [`NetDir`] object from
592/// [`NetDirProvider`] and other APIs, to specify how recent the information
593/// must be in order to be useful.
594#[derive(Copy, Clone, Eq, PartialEq, Debug)]
595#[allow(clippy::exhaustive_enums)]
596pub enum Timeliness {
597    /// The network directory must be strictly timely.
598    ///
599    /// That is, it must be based on a consensus that valid right now, with no
600    /// tolerance for skew or consensus problems.
601    ///
602    /// Avoid using this option if you could use [`Timeliness::Timely`] instead.
603    Strict,
604    /// The network directory must be roughly timely.
605    ///
606    /// This is, it must be be based on a consensus that is not _too_ far in the
607    /// future, and not _too_ far in the past.
608    ///
609    /// (The tolerances for "too far" will depend on configuration.)
610    ///
611    /// This is almost always the option that you want to use.
612    Timely,
613    /// Any network directory is permissible, regardless of how untimely.
614    ///
615    /// Avoid using this option if you could use [`Timeliness::Timely`] instead.
616    Unchecked,
617}
618
619/// An object that can provide [`NetDir`]s, as well as inform consumers when
620/// they might have changed.
621///
622/// It is the responsibility of the implementor of `NetDirProvider`
623/// to try to obtain an up-to-date `NetDir`,
624/// and continuously to maintain and update it.
625///
626/// In usual configurations, Arti uses `tor_dirmgr::DirMgr`
627/// as its `NetDirProvider`.
628#[async_trait]
629pub trait NetDirProvider: UpcastArcNetDirProvider + Send + Sync {
630    /// Return a network directory that's live according to the provided
631    /// `timeliness`.
632    fn netdir(&self, timeliness: Timeliness) -> Result<Arc<NetDir>>;
633
634    /// Return a reasonable netdir for general usage.
635    ///
636    /// This is an alias for
637    /// [`NetDirProvider::netdir`]`(`[`Timeliness::Timely`]`)`.
638    fn timely_netdir(&self) -> Result<Arc<NetDir>> {
639        self.netdir(Timeliness::Timely)
640    }
641
642    /// Return a new asynchronous stream that will receive notification
643    /// whenever the consensus has changed.
644    ///
645    /// Multiple events may be batched up into a single item: each time
646    /// this stream yields an event, all you can assume is that the event has
647    /// occurred at least once.
648    fn events(&self) -> BoxStream<'static, DirEvent>;
649
650    /// Return the latest network parameters.
651    ///
652    /// If we have no directory, return a reasonable set of defaults.
653    fn params(&self) -> Arc<dyn AsRef<NetParameters>>;
654
655    /// Get a NetDir from `provider`, waiting until one exists.
656    async fn wait_for_netdir(
657        &self,
658        timeliness: Timeliness,
659    ) -> std::result::Result<Arc<NetDir>, NetdirProviderShutdown> {
660        if let Ok(nd) = self.netdir(timeliness) {
661            return Ok(nd);
662        }
663
664        let mut stream = self.events();
665        loop {
666            // We need to retry `self.netdir()` before waiting for any stream events, to
667            // avoid deadlock.
668            //
669            // We ignore all errors here: they can all potentially be fixed by
670            // getting a fresh consensus, and they will all get warned about
671            // by the NetDirProvider itself.
672            if let Ok(nd) = self.netdir(timeliness) {
673                return Ok(nd);
674            }
675            match stream.next().await {
676                Some(_) => {}
677                None => {
678                    return Err(NetdirProviderShutdown);
679                }
680            }
681        }
682    }
683
684    /// Wait until `provider` lists `target`.
685    ///
686    /// NOTE: This might potentially wait indefinitely, if `target` is never actually
687    /// becomes listed in the directory.  It will exit if the `NetDirProvider` shuts down.
688    async fn wait_for_netdir_to_list(
689        &self,
690        target: &tor_linkspec::RelayIds,
691        timeliness: Timeliness,
692    ) -> std::result::Result<(), NetdirProviderShutdown> {
693        let mut events = self.events();
694        loop {
695            // See if the desired relay is in the netdir.
696            //
697            // We do this before waiting for any events, to avoid race conditions.
698            {
699                let netdir = self.wait_for_netdir(timeliness).await?;
700                if netdir.ids_listed(target) == Some(true) {
701                    return Ok(());
702                }
703                // If we reach this point, then ids_listed returned `Some(false)`,
704                // meaning "This relay is definitely not in the current directory";
705                // or it returned `None`, meaning "waiting for more information
706                // about this network directory.
707                // In both cases, it's reasonable to just wait for another netdir
708                // event and try again.
709            }
710            // We didn't find the relay; wait for the provider to have a new netdir
711            // or more netdir information.
712            if events.next().await.is_none() {
713                // The event stream is closed; the provider has shut down.
714                return Err(NetdirProviderShutdown);
715            }
716        }
717    }
718
719    /// Return the latest set of recommended and required protocols, if there is one.
720    ///
721    /// This may be more recent (or more available) than this provider's associated NetDir.
722    fn protocol_statuses(&self) -> Option<(SystemTime, Arc<netstatus::ProtoStatuses>)>;
723}
724
725impl<T> NetDirProvider for Arc<T>
726where
727    T: NetDirProvider,
728{
729    fn netdir(&self, timeliness: Timeliness) -> Result<Arc<NetDir>> {
730        self.deref().netdir(timeliness)
731    }
732
733    fn timely_netdir(&self) -> Result<Arc<NetDir>> {
734        self.deref().timely_netdir()
735    }
736
737    fn events(&self) -> BoxStream<'static, DirEvent> {
738        self.deref().events()
739    }
740
741    fn params(&self) -> Arc<dyn AsRef<NetParameters>> {
742        self.deref().params()
743    }
744
745    fn protocol_statuses(&self) -> Option<(SystemTime, Arc<netstatus::ProtoStatuses>)> {
746        self.deref().protocol_statuses()
747    }
748}
749
750/// Helper trait: allows any `Arc<X>` to be upcast to a `Arc<dyn
751/// NetDirProvider>` if X is an implementation or supertrait of NetDirProvider.
752///
753/// This trait exists to work around a limitation in rust: when trait upcasting
754/// coercion is stable, this will be unnecessary.
755///
756/// The Rust tracking issue is <https://github.com/rust-lang/rust/issues/65991>.
757pub trait UpcastArcNetDirProvider {
758    /// Return a view of this object as an `Arc<dyn NetDirProvider>`
759    fn upcast_arc<'a>(self: Arc<Self>) -> Arc<dyn NetDirProvider + 'a>
760    where
761        Self: 'a;
762}
763
764impl<T> UpcastArcNetDirProvider for T
765where
766    T: NetDirProvider + Sized,
767{
768    fn upcast_arc<'a>(self: Arc<Self>) -> Arc<dyn NetDirProvider + 'a>
769    where
770        Self: 'a,
771    {
772        self
773    }
774}
775
776impl AsRef<NetParameters> for NetDir {
777    fn as_ref(&self) -> &NetParameters {
778        self.params()
779    }
780}
781
782/// A partially build NetDir -- it can't be unwrapped until it has
783/// enough information to build safe paths.
784#[derive(Debug, Clone)]
785pub struct PartialNetDir {
786    /// The netdir that's under construction.
787    netdir: NetDir,
788
789    /// The previous netdir, if we had one
790    ///
791    /// Used as a cache, so we can reuse information
792    #[cfg(feature = "hs-common")]
793    prev_netdir: Option<Arc<NetDir>>,
794}
795
796/// A view of a relay on the Tor network, suitable for building circuits.
797// TODO: This should probably be a more specific struct, with a trait
798// that implements it.
799#[derive(Clone)]
800pub struct Relay<'a> {
801    /// A router descriptor for this relay.
802    rs: &'a netstatus::MdRouterStatus,
803    /// A microdescriptor for this relay.
804    md: &'a Microdesc,
805    /// The country code this relay is in, if we know one.
806    #[cfg(feature = "geoip")]
807    cc: Option<CountryCode>,
808}
809
810/// A relay that we haven't checked for validity or usability in
811/// routing.
812#[derive(Debug)]
813pub struct UncheckedRelay<'a> {
814    /// A router descriptor for this relay.
815    rs: &'a netstatus::MdRouterStatus,
816    /// A microdescriptor for this relay, if there is one.
817    md: Option<&'a Microdesc>,
818    /// The country code this relay is in, if we know one.
819    #[cfg(feature = "geoip")]
820    cc: Option<CountryCode>,
821}
822
823/// A partial or full network directory that we can download
824/// microdescriptors for.
825pub trait MdReceiver {
826    /// Return an iterator over the digests for all of the microdescriptors
827    /// that this netdir is missing.
828    fn missing_microdescs(&self) -> Box<dyn Iterator<Item = &MdDigest> + '_>;
829    /// Add a microdescriptor to this netdir, if it was wanted.
830    ///
831    /// Return true if it was indeed wanted.
832    fn add_microdesc(&mut self, md: Microdesc) -> bool;
833    /// Return the number of missing microdescriptors.
834    fn n_missing(&self) -> usize;
835}
836
837impl PartialNetDir {
838    /// Create a new PartialNetDir with a given consensus, and no
839    /// microdescriptors loaded.
840    ///
841    /// If `replacement_params` is provided, override network parameters from
842    /// the consensus with those from `replacement_params`.
843    pub fn new(
844        consensus: MdConsensus,
845        replacement_params: Option<&netstatus::NetParams<i32>>,
846    ) -> Self {
847        Self::new_inner(
848            consensus,
849            replacement_params,
850            #[cfg(feature = "geoip")]
851            None,
852        )
853    }
854
855    /// Create a new PartialNetDir with GeoIP support.
856    ///
857    /// This does the same thing as `new()`, except the provided GeoIP database is used to add
858    /// country codes to relays.
859    #[cfg(feature = "geoip")]
860    #[cfg_attr(docsrs, doc(cfg(feature = "geoip")))]
861    pub fn new_with_geoip(
862        consensus: MdConsensus,
863        replacement_params: Option<&netstatus::NetParams<i32>>,
864        geoip_db: &GeoipDb,
865    ) -> Self {
866        Self::new_inner(consensus, replacement_params, Some(geoip_db))
867    }
868
869    /// Implementation of the `new()` functions.
870    fn new_inner(
871        consensus: MdConsensus,
872        replacement_params: Option<&netstatus::NetParams<i32>>,
873        #[cfg(feature = "geoip")] geoip_db: Option<&GeoipDb>,
874    ) -> Self {
875        let mut params = NetParameters::default();
876
877        // (We ignore unrecognized options here, since they come from
878        // the consensus, and we don't expect to recognize everything
879        // there.)
880        let _ = params.saturating_update(consensus.params().iter());
881
882        // Now see if the user has any parameters to override.
883        // (We have to do this now, or else changes won't be reflected in our
884        // weights.)
885        if let Some(replacement) = replacement_params {
886            for u in params.saturating_update(replacement.iter()) {
887                warn!("Unrecognized option: override_net_params.{}", u);
888            }
889        }
890
891        // Compute the weights we'll want to use for these relays.
892        let weights = weight::WeightSet::from_consensus(&consensus, &params);
893
894        let n_relays = consensus.c_relays().len();
895
896        let rsidx_by_missing = consensus
897            .c_relays()
898            .iter_enumerated()
899            .map(|(rsidx, rs)| (*rs.md_digest(), rsidx))
900            .collect();
901
902        let rsidx_by_rsa = consensus
903            .c_relays()
904            .iter_enumerated()
905            .map(|(rsidx, rs)| (*rs.rsa_identity(), rsidx))
906            .collect();
907
908        #[cfg(feature = "geoip")]
909        let country_codes = if let Some(db) = geoip_db {
910            consensus
911                .c_relays()
912                .iter()
913                .map(|rs| {
914                    db.lookup_country_code_multi(rs.addrs().iter().map(|x| x.ip()))
915                        .cloned()
916                })
917                .collect()
918        } else {
919            Default::default()
920        };
921
922        #[cfg(feature = "hs-common")]
923        let hsdir_rings = Arc::new({
924            let params = HsDirParams::compute(&consensus, &params).expect("Invalid consensus!");
925            // TODO: It's a bit ugly to use expect above, but this function does
926            // not return a Result. On the other hand, the error conditions under which
927            // HsDirParams::compute can return Err are _very_ narrow and hard to
928            // hit; see documentation in that function.  As such, we probably
929            // don't need to have this return a Result.
930
931            params.map(HsDirRing::empty_from_params)
932        });
933
934        let netdir = NetDir {
935            consensus: Arc::new(consensus),
936            params,
937            mds: vec![None; n_relays].into(),
938            rsidx_by_missing,
939            rsidx_by_rsa: Arc::new(rsidx_by_rsa),
940            rsidx_by_ed: HashMap::with_capacity(n_relays),
941            #[cfg(feature = "hs-common")]
942            hsdir_rings,
943            weights,
944            #[cfg(feature = "geoip")]
945            country_codes,
946        };
947
948        PartialNetDir {
949            netdir,
950            #[cfg(feature = "hs-common")]
951            prev_netdir: None,
952        }
953    }
954
955    /// Return the declared lifetime of this PartialNetDir.
956    pub fn lifetime(&self) -> &netstatus::Lifetime {
957        self.netdir.lifetime()
958    }
959
960    /// Record a previous netdir, which can be used for reusing cached information
961    //
962    // Fills in as many missing microdescriptors as possible in this
963    // netdir, using the microdescriptors from the previous netdir.
964    //
965    // With HS enabled, stores the netdir for reuse of relay hash ring index values.
966    #[allow(clippy::needless_pass_by_value)] // prev might, or might not, be stored
967    pub fn fill_from_previous_netdir(&mut self, prev: Arc<NetDir>) {
968        for md in prev.mds.iter().flatten() {
969            self.netdir.add_arc_microdesc(md.clone());
970        }
971
972        #[cfg(feature = "hs-common")]
973        {
974            self.prev_netdir = Some(prev);
975        }
976    }
977
978    /// Compute the hash ring(s) for this NetDir
979    #[cfg(feature = "hs-common")]
980    fn compute_rings(&mut self) {
981        let params = HsDirParams::compute(&self.netdir.consensus, &self.netdir.params)
982            .expect("Invalid consensus");
983        // TODO: see TODO by similar expect in new()
984
985        self.netdir.hsdir_rings =
986            Arc::new(params.map(|params| {
987                HsDirRing::compute(params, &self.netdir, self.prev_netdir.as_deref())
988            }));
989    }
990
991    /// Return true if this are enough information in this directory
992    /// to build multihop paths.
993    pub fn have_enough_paths(&self) -> bool {
994        self.netdir.have_enough_paths()
995    }
996    /// If this directory has enough information to build multihop
997    /// circuits, return it.
998    pub fn unwrap_if_sufficient(
999        #[allow(unused_mut)] mut self,
1000    ) -> std::result::Result<NetDir, PartialNetDir> {
1001        if self.netdir.have_enough_paths() {
1002            #[cfg(feature = "hs-common")]
1003            self.compute_rings();
1004            Ok(self.netdir)
1005        } else {
1006            Err(self)
1007        }
1008    }
1009}
1010
1011impl MdReceiver for PartialNetDir {
1012    fn missing_microdescs(&self) -> Box<dyn Iterator<Item = &MdDigest> + '_> {
1013        self.netdir.missing_microdescs()
1014    }
1015    fn add_microdesc(&mut self, md: Microdesc) -> bool {
1016        self.netdir.add_microdesc(md)
1017    }
1018    fn n_missing(&self) -> usize {
1019        self.netdir.n_missing()
1020    }
1021}
1022
1023impl NetDir {
1024    /// Return the declared lifetime of this NetDir.
1025    pub fn lifetime(&self) -> &netstatus::Lifetime {
1026        self.consensus.lifetime()
1027    }
1028
1029    /// Add `md` to this NetDir.
1030    ///
1031    /// Return true if we wanted it, and false otherwise.
1032    fn add_arc_microdesc(&mut self, md: Arc<Microdesc>) -> bool {
1033        if let Some(rsidx) = self.rsidx_by_missing.remove(md.digest()) {
1034            assert_eq!(self.c_relays()[rsidx].md_digest(), md.digest());
1035
1036            // There should never be two approved MDs in the same
1037            // consensus listing the same ID... but if there is,
1038            // we'll let the most recent one win.
1039            self.rsidx_by_ed.insert(*md.ed25519_id(), rsidx);
1040
1041            // Happy path: we did indeed want this one.
1042            self.mds[rsidx] = Some(md);
1043
1044            // Save some space in the missing-descriptor list.
1045            if self.rsidx_by_missing.len() < self.rsidx_by_missing.capacity() / 4 {
1046                self.rsidx_by_missing.shrink_to_fit();
1047            }
1048
1049            return true;
1050        }
1051
1052        // Either we already had it, or we never wanted it at all.
1053        false
1054    }
1055
1056    /// Construct a (possibly invalid) Relay object from a routerstatus and its
1057    /// index within the consensus.
1058    fn relay_from_rs_and_rsidx<'a>(
1059        &'a self,
1060        rs: &'a netstatus::MdRouterStatus,
1061        rsidx: RouterStatusIdx,
1062    ) -> UncheckedRelay<'a> {
1063        debug_assert_eq!(self.c_relays()[rsidx].rsa_identity(), rs.rsa_identity());
1064        let md = self.mds[rsidx].as_deref();
1065        if let Some(md) = md {
1066            debug_assert_eq!(rs.md_digest(), md.digest());
1067        }
1068
1069        UncheckedRelay {
1070            rs,
1071            md,
1072            #[cfg(feature = "geoip")]
1073            cc: self.country_codes.get(rsidx.0).copied().flatten(),
1074        }
1075    }
1076
1077    /// Return the value of the hsdir_n_replicas param.
1078    #[cfg(feature = "hs-common")]
1079    fn n_replicas(&self) -> u8 {
1080        self.params
1081            .hsdir_n_replicas
1082            .get()
1083            .try_into()
1084            .expect("BoundedInt did not enforce bounds")
1085    }
1086
1087    /// Return the spread parameter for the specified `op`.
1088    #[cfg(feature = "hs-common")]
1089    fn spread(&self, op: HsDirOp) -> usize {
1090        let spread = match op {
1091            HsDirOp::Download => self.params.hsdir_spread_fetch,
1092            #[cfg(feature = "hs-service")]
1093            HsDirOp::Upload => self.params.hsdir_spread_store,
1094        };
1095
1096        spread
1097            .get()
1098            .try_into()
1099            .expect("BoundedInt did not enforce bounds!")
1100    }
1101
1102    /// Select `spread` hsdir relays for the specified `hsid` from a given `ring`.
1103    ///
1104    /// Algorithm:
1105    ///
1106    /// for idx in 1..=n_replicas:
1107    ///       - let H = hsdir_ring::onion_service_index(id, replica, rand,
1108    ///         period).
1109    ///       - Find the position of H within hsdir_ring.
1110    ///       - Take elements from hsdir_ring starting at that position,
1111    ///         adding them to Dirs until we have added `spread` new elements
1112    ///         that were not there before.
1113    #[cfg(feature = "hs-common")]
1114    fn select_hsdirs<'h, 'r: 'h>(
1115        &'r self,
1116        hsid: HsBlindId,
1117        ring: &'h HsDirRing,
1118        spread: usize,
1119    ) -> impl Iterator<Item = Relay<'r>> + 'h {
1120        let n_replicas = self.n_replicas();
1121
1122        (1..=n_replicas) // 1-indexed !
1123            .flat_map({
1124                let mut selected_nodes = HashSet::new();
1125
1126                move |replica: u8| {
1127                    let hsdir_idx = hsdir_ring::service_hsdir_index(&hsid, replica, ring.params());
1128
1129                    ring.ring_items_at(hsdir_idx, spread, |(hsdir_idx, _)| {
1130                        // According to rend-spec 2.2.3:
1131                        //                                                  ... If any of those
1132                        // nodes have already been selected for a lower-numbered replica of the
1133                        // service, any nodes already chosen are disregarded (i.e. skipped over)
1134                        // when choosing a replica's hsdir_spread_store nodes.
1135                        selected_nodes.insert(*hsdir_idx)
1136                    })
1137                    .collect::<Vec<_>>()
1138                }
1139            })
1140            .filter_map(move |(_hsdir_idx, rs_idx)| {
1141                // This ought not to be None but let's not panic or bail if it is
1142                self.relay_by_rs_idx(*rs_idx)
1143            })
1144    }
1145
1146    /// Replace the overridden parameters in this netdir with `new_replacement`.
1147    ///
1148    /// After this function is done, the netdir's parameters will be those in
1149    /// the consensus, overridden by settings from `new_replacement`.  Any
1150    /// settings in the old replacement parameters will be discarded.
1151    pub fn replace_overridden_parameters(&mut self, new_replacement: &netstatus::NetParams<i32>) {
1152        // TODO(nickm): This is largely duplicate code from PartialNetDir::new().
1153        let mut new_params = NetParameters::default();
1154        let _ = new_params.saturating_update(self.consensus.params().iter());
1155        for u in new_params.saturating_update(new_replacement.iter()) {
1156            warn!("Unrecognized option: override_net_params.{}", u);
1157        }
1158
1159        self.params = new_params;
1160    }
1161
1162    /// Return an iterator over all Relay objects, including invalid ones
1163    /// that we can't use.
1164    pub fn all_relays(&self) -> impl Iterator<Item = UncheckedRelay<'_>> {
1165        // TODO: I'd like if we could memoize this so we don't have to
1166        // do so many hashtable lookups.
1167        self.c_relays()
1168            .iter_enumerated()
1169            .map(move |(rsidx, rs)| self.relay_from_rs_and_rsidx(rs, rsidx))
1170    }
1171    /// Return an iterator over all [usable](NetDir#usable) Relays.
1172    pub fn relays(&self) -> impl Iterator<Item = Relay<'_>> {
1173        self.all_relays().filter_map(UncheckedRelay::into_relay)
1174    }
1175
1176    /// Look up a relay's [`Microdesc`] by its [`RouterStatusIdx`]
1177    #[cfg_attr(not(feature = "hs-common"), allow(dead_code))]
1178    pub(crate) fn md_by_rsidx(&self, rsidx: RouterStatusIdx) -> Option<&Microdesc> {
1179        self.mds.get(rsidx)?.as_deref()
1180    }
1181
1182    /// Return a relay matching a given identity, if we have a
1183    /// _usable_ relay with that key.
1184    ///
1185    /// (Does not return [unusable](NetDir#usable) relays.)
1186    ///
1187    ///
1188    /// Note that a `None` answer is not always permanent: if a microdescriptor
1189    /// is subsequently added for a relay with this ID, the ID may become usable
1190    /// even if it was not usable before.
1191    pub fn by_id<'a, T>(&self, id: T) -> Option<Relay<'_>>
1192    where
1193        T: Into<RelayIdRef<'a>>,
1194    {
1195        let id = id.into();
1196        let answer = match id {
1197            RelayIdRef::Ed25519(ed25519) => {
1198                let rsidx = *self.rsidx_by_ed.get(ed25519)?;
1199                let rs = self.c_relays().get(rsidx).expect("Corrupt index");
1200
1201                self.relay_from_rs_and_rsidx(rs, rsidx).into_relay()?
1202            }
1203            RelayIdRef::Rsa(rsa) => self
1204                .by_rsa_id_unchecked(rsa)
1205                .and_then(UncheckedRelay::into_relay)?,
1206            other_type => self.relays().find(|r| r.has_identity(other_type))?,
1207        };
1208        assert!(answer.has_identity(id));
1209        Some(answer)
1210    }
1211
1212    /// Obtain a `Relay` given a `RouterStatusIdx`
1213    ///
1214    /// Differs from `relay_from_rs_and_rsi` as follows:
1215    ///  * That function expects the caller to already have an `MdRouterStatus`;
1216    ///    it checks with `debug_assert` that the relay in the netdir matches.
1217    ///  * That function panics if the `RouterStatusIdx` is invalid; this one returns `None`.
1218    ///  * That function returns an `UncheckedRelay`; this one a `Relay`.
1219    ///
1220    /// `None` could be returned here, even with a valid `rsi`,
1221    /// if `rsi` refers to an [unusable](NetDir#usable) relay.
1222    #[cfg_attr(not(feature = "hs-common"), allow(dead_code))]
1223    pub(crate) fn relay_by_rs_idx(&self, rs_idx: RouterStatusIdx) -> Option<Relay<'_>> {
1224        let rs = self.c_relays().get(rs_idx)?;
1225        let md = self.mds.get(rs_idx)?.as_deref();
1226        UncheckedRelay {
1227            rs,
1228            md,
1229            #[cfg(feature = "geoip")]
1230            cc: self.country_codes.get(rs_idx.0).copied().flatten(),
1231        }
1232        .into_relay()
1233    }
1234
1235    /// Return a relay with the same identities as those in `target`, if one
1236    /// exists.
1237    ///
1238    /// Does not return [unusable](NetDir#usable) relays.
1239    ///
1240    /// Note that a negative result from this method is not necessarily permanent:
1241    /// it may be the case that a relay exists,
1242    /// but we don't yet have enough information about it to know all of its IDs.
1243    /// To test whether a relay is *definitely* absent,
1244    /// use [`by_ids_detailed`](Self::by_ids_detailed)
1245    /// or [`ids_listed`](Self::ids_listed).
1246    ///
1247    /// # Limitations
1248    ///
1249    /// This will be very slow if `target` does not have an Ed25519 or RSA
1250    /// identity.
1251    pub fn by_ids<T>(&self, target: &T) -> Option<Relay<'_>>
1252    where
1253        T: HasRelayIds + ?Sized,
1254    {
1255        let mut identities = target.identities();
1256        // Don't try if there are no identities.
1257        let first_id = identities.next()?;
1258
1259        // Since there is at most one relay with each given ID type,
1260        // we only need to check the first relay we find.
1261        let candidate = self.by_id(first_id)?;
1262        if identities.all(|wanted_id| candidate.has_identity(wanted_id)) {
1263            Some(candidate)
1264        } else {
1265            None
1266        }
1267    }
1268
1269    /// Check whether there is a relay that has at least one identity from
1270    /// `target`, and which _could_ have every identity from `target`.
1271    /// If so, return such a relay.
1272    ///
1273    /// Return `Ok(None)` if we did not find a relay with any identity from `target`.
1274    ///
1275    /// Return `RelayLookupError::Impossible` if we found a relay with at least
1276    /// one identity from `target`, but that relay's other identities contradict
1277    /// what we learned from `target`.
1278    ///
1279    /// Does not return [unusable](NetDir#usable) relays.
1280    ///
1281    /// (This function is only useful if you need to distinguish the
1282    /// "impossible" case from the "no such relay known" case.)
1283    ///
1284    /// # Limitations
1285    ///
1286    /// This will be very slow if `target` does not have an Ed25519 or RSA
1287    /// identity.
1288    //
1289    // TODO HS: This function could use a better name.
1290    //
1291    // TODO: We could remove the feature restriction here once we think this API is
1292    // stable.
1293    #[cfg(feature = "hs-common")]
1294    pub fn by_ids_detailed<T>(
1295        &self,
1296        target: &T,
1297    ) -> std::result::Result<Option<Relay<'_>>, RelayLookupError>
1298    where
1299        T: HasRelayIds + ?Sized,
1300    {
1301        let candidate = target
1302            .identities()
1303            // Find all the relays that share any identity with this set of identities.
1304            .filter_map(|id| self.by_id(id))
1305            // We might find the same relay more than once under a different
1306            // identity, so we remove the duplicates.
1307            //
1308            // Since there is at most one relay per rsa identity per consensus,
1309            // this is a true uniqueness check under current construction rules.
1310            .unique_by(|r| r.rs.rsa_identity())
1311            // If we find two or more distinct relays, then have a contradiction.
1312            .at_most_one()
1313            .map_err(|_| RelayLookupError::Impossible)?;
1314
1315        // If we have no candidate, return None early.
1316        let candidate = match candidate {
1317            Some(relay) => relay,
1318            None => return Ok(None),
1319        };
1320
1321        // Now we know we have a single candidate.  Make sure that it does not have any
1322        // identity that does not match the target.
1323        if target
1324            .identities()
1325            .all(|wanted_id| match candidate.identity(wanted_id.id_type()) {
1326                None => true,
1327                Some(id) => id == wanted_id,
1328            })
1329        {
1330            Ok(Some(candidate))
1331        } else {
1332            Err(RelayLookupError::Impossible)
1333        }
1334    }
1335
1336    /// Return a boolean if this consensus definitely has (or does not have) a
1337    /// relay matching the listed identities.
1338    ///
1339    /// `Some(true)` indicates that the relay exists.
1340    /// `Some(false)` indicates that the relay definitely does not exist.
1341    /// `None` indicates that we can't yet tell whether such a relay exists,
1342    ///  due to missing information.
1343    fn id_pair_listed(&self, ed_id: &Ed25519Identity, rsa_id: &RsaIdentity) -> Option<bool> {
1344        let r = self.by_rsa_id_unchecked(rsa_id);
1345        match r {
1346            Some(unchecked) => {
1347                if !unchecked.rs.ed25519_id_is_usable() {
1348                    return Some(false);
1349                }
1350                // If md is present, then it's listed iff we have the right
1351                // ed id.  Otherwise we don't know if it's listed.
1352                unchecked.md.map(|md| md.ed25519_id() == ed_id)
1353            }
1354            None => {
1355                // Definitely not listed.
1356                Some(false)
1357            }
1358        }
1359    }
1360
1361    /// Check whether a relay exists (or may exist)
1362    /// with the same identities as those in `target`.
1363    ///
1364    /// `Some(true)` indicates that the relay exists.
1365    /// `Some(false)` indicates that the relay definitely does not exist.
1366    /// `None` indicates that we can't yet tell whether such a relay exists,
1367    ///  due to missing information.
1368    pub fn ids_listed<T>(&self, target: &T) -> Option<bool>
1369    where
1370        T: HasRelayIds + ?Sized,
1371    {
1372        let rsa_id = target.rsa_identity();
1373        let ed25519_id = target.ed_identity();
1374
1375        // TODO: If we later support more identity key types, this will
1376        // become incorrect.  This assertion might help us recognize that case.
1377        const_assert!(RelayIdType::COUNT == 2);
1378
1379        match (rsa_id, ed25519_id) {
1380            (Some(r), Some(e)) => self.id_pair_listed(e, r),
1381            (Some(r), None) => Some(self.rsa_id_is_listed(r)),
1382            (None, Some(e)) => {
1383                if self.rsidx_by_ed.contains_key(e) {
1384                    Some(true)
1385                } else {
1386                    None
1387                }
1388            }
1389            (None, None) => None,
1390        }
1391    }
1392
1393    /// Return a (possibly [unusable](NetDir#usable)) relay with a given RSA identity.
1394    ///
1395    /// This API can be used to find information about a relay that is listed in
1396    /// the current consensus, even if we don't yet have enough information
1397    /// (like a microdescriptor) about the relay to use it.
1398    #[cfg_attr(feature = "experimental-api", visibility::make(pub))]
1399    #[cfg_attr(docsrs, doc(cfg(feature = "experimental-api")))]
1400    fn by_rsa_id_unchecked(&self, rsa_id: &RsaIdentity) -> Option<UncheckedRelay<'_>> {
1401        let rsidx = *self.rsidx_by_rsa.get(rsa_id)?;
1402        let rs = self.c_relays().get(rsidx).expect("Corrupt index");
1403        assert_eq!(rs.rsa_identity(), rsa_id);
1404        Some(self.relay_from_rs_and_rsidx(rs, rsidx))
1405    }
1406    /// Return the relay with a given RSA identity, if we have one
1407    /// and it is [usable](NetDir#usable).
1408    fn by_rsa_id(&self, rsa_id: &RsaIdentity) -> Option<Relay<'_>> {
1409        self.by_rsa_id_unchecked(rsa_id)?.into_relay()
1410    }
1411    /// Return true if `rsa_id` is listed in this directory, even if it isn't
1412    /// currently usable.
1413    ///
1414    /// (An "[unusable](NetDir#usable)" relay in this context is one for which we don't have full
1415    /// directory information.)
1416    #[cfg_attr(feature = "experimental-api", visibility::make(pub))]
1417    #[cfg_attr(docsrs, doc(cfg(feature = "experimental-api")))]
1418    fn rsa_id_is_listed(&self, rsa_id: &RsaIdentity) -> bool {
1419        self.by_rsa_id_unchecked(rsa_id).is_some()
1420    }
1421
1422    /// List the hsdirs in this NetDir, that should be in the HSDir rings
1423    ///
1424    /// The results are not returned in any particular order.
1425    #[cfg(feature = "hs-common")]
1426    fn all_hsdirs(&self) -> impl Iterator<Item = (RouterStatusIdx, Relay<'_>)> {
1427        self.c_relays().iter_enumerated().filter_map(|(rsidx, rs)| {
1428            let relay = self.relay_from_rs_and_rsidx(rs, rsidx);
1429            relay.is_hsdir_for_ring().then_some(())?;
1430            let relay = relay.into_relay()?;
1431            Some((rsidx, relay))
1432        })
1433    }
1434
1435    /// Return the parameters from the consensus, clamped to the
1436    /// correct ranges, with defaults filled in.
1437    ///
1438    /// NOTE: that unsupported parameters aren't returned here; only those
1439    /// values configured in the `params` module are available.
1440    pub fn params(&self) -> &NetParameters {
1441        &self.params
1442    }
1443
1444    /// Return a [`ProtoStatus`](netstatus::ProtoStatus) that lists the
1445    /// network's current requirements and recommendations for the list of
1446    /// protocols that every relay must implement.
1447    //
1448    // TODO HS: I am not sure this is the right API; other alternatives would be:
1449    //    * To expose the _required_ relay protocol list instead (since that's all that
1450    //      onion service implementations need).
1451    //    * To expose the client protocol list as well (for symmetry).
1452    //    * To expose the MdConsensus instead (since that's more general, although
1453    //      it restricts the future evolution of this API).
1454    //
1455    // I think that this is a reasonably good compromise for now, but I'm going
1456    // to put it behind the `hs-common` feature to give us time to consider more.
1457    #[cfg(feature = "hs-common")]
1458    pub fn relay_protocol_status(&self) -> &netstatus::ProtoStatus {
1459        self.consensus.relay_protocol_status()
1460    }
1461
1462    /// Return a [`ProtoStatus`](netstatus::ProtoStatus) that lists the
1463    /// network's current requirements and recommendations for the list of
1464    /// protocols that every relay must implement.
1465    //
1466    // TODO HS: See notes on relay_protocol_status above.
1467    #[cfg(feature = "hs-common")]
1468    pub fn client_protocol_status(&self) -> &netstatus::ProtoStatus {
1469        self.consensus.client_protocol_status()
1470    }
1471
1472    /// Return weighted the fraction of relays we can use.  We only
1473    /// consider relays that match the predicate `usable`.  We weight
1474    /// this bandwidth according to the provided `role`.
1475    ///
1476    /// If _no_ matching relays in the consensus have a nonzero
1477    /// weighted bandwidth value, we fall back to looking at the
1478    /// unweighted fraction of matching relays.
1479    ///
1480    /// If there are no matching relays in the consensus, we return 0.0.
1481    fn frac_for_role<'a, F>(&'a self, role: WeightRole, usable: F) -> f64
1482    where
1483        F: Fn(&UncheckedRelay<'a>) -> bool,
1484    {
1485        let mut total_weight = 0_u64;
1486        let mut have_weight = 0_u64;
1487        let mut have_count = 0_usize;
1488        let mut total_count = 0_usize;
1489
1490        for r in self.all_relays() {
1491            if !usable(&r) {
1492                continue;
1493            }
1494            let w = self.weights.weight_rs_for_role(r.rs, role);
1495            total_weight += w;
1496            total_count += 1;
1497            if r.is_usable() {
1498                have_weight += w;
1499                have_count += 1;
1500            }
1501        }
1502
1503        if total_weight > 0 {
1504            // The consensus lists some weighted bandwidth so return the
1505            // fraction of the weighted bandwidth for which we have
1506            // descriptors.
1507            (have_weight as f64) / (total_weight as f64)
1508        } else if total_count > 0 {
1509            // The consensus lists no weighted bandwidth for these relays,
1510            // but at least it does list relays. Return the fraction of
1511            // relays for which it we have descriptors.
1512            (have_count as f64) / (total_count as f64)
1513        } else {
1514            // There are no relays of this kind in the consensus.  Return
1515            // 0.0, to avoid dividing by zero and giving NaN.
1516            0.0
1517        }
1518    }
1519    /// Return the estimated fraction of possible paths that we have
1520    /// enough microdescriptors to build.
1521    fn frac_usable_paths(&self) -> f64 {
1522        // TODO #504, TODO SPEC: We may want to add a set of is_flagged_fast() and/or
1523        // is_flagged_stable() checks here.  This will require spec clarification.
1524        let f_g = self.frac_for_role(WeightRole::Guard, |u| {
1525            u.low_level_details().is_suitable_as_guard()
1526        });
1527        let f_m = self.frac_for_role(WeightRole::Middle, |_| true);
1528        let f_e = if self.all_relays().any(|u| u.rs.is_flagged_exit()) {
1529            self.frac_for_role(WeightRole::Exit, |u| u.rs.is_flagged_exit())
1530        } else {
1531            // If there are no exits at all, we use f_m here.
1532            f_m
1533        };
1534        f_g * f_m * f_e
1535    }
1536    /// Return true if there is enough information in this NetDir to build
1537    /// multihop circuits.
1538    fn have_enough_paths(&self) -> bool {
1539        // TODO-A001: This should check for our guards as well, and
1540        // make sure that if they're listed in the consensus, we have
1541        // the descriptors for them.
1542
1543        // If we can build a randomly chosen path with at least this
1544        // probability, we know enough information to participate
1545        // on the network.
1546
1547        let min_frac_paths: f64 = self.params().min_circuit_path_threshold.as_fraction();
1548
1549        // What fraction of paths can we build?
1550        let available = self.frac_usable_paths();
1551
1552        available >= min_frac_paths
1553    }
1554    /// Choose a relay at random.
1555    ///
1556    /// Each relay is chosen with probability proportional to its weight
1557    /// in the role `role`, and is only selected if the predicate `usable`
1558    /// returns true for it.
1559    ///
1560    /// This function returns None if (and only if) there are no relays
1561    /// with nonzero weight where `usable` returned true.
1562    //
1563    // TODO this API, with the `usable` closure, invites mistakes where we fail to
1564    // check conditions that are implied by the role we have selected for the relay:
1565    // call sites must include a call to `Relay::is_polarity_inverter()` or whatever.
1566    // IMO the `WeightRole` ought to imply a condition (and it should therefore probably
1567    // be renamed.)  -Diziet
1568    pub fn pick_relay<'a, R, P>(
1569        &'a self,
1570        rng: &mut R,
1571        role: WeightRole,
1572        usable: P,
1573    ) -> Option<Relay<'a>>
1574    where
1575        R: rand::Rng,
1576        P: FnMut(&Relay<'a>) -> bool,
1577    {
1578        let relays: Vec<_> = self.relays().filter(usable).collect();
1579        // This algorithm uses rand::distr::WeightedIndex, and uses
1580        // gives O(n) time and space  to build the index, plus O(log n)
1581        // sampling time.
1582        //
1583        // We might be better off building a WeightedIndex in advance
1584        // for each `role`, and then sampling it repeatedly until we
1585        // get a relay that satisfies `usable`.  Or we might not --
1586        // that depends heavily on the actual particulars of our
1587        // inputs.  We probably shouldn't make any changes there
1588        // unless profiling tells us that this function is in a hot
1589        // path.
1590        //
1591        // The C Tor sampling implementation goes through some trouble
1592        // here to try to make its path selection constant-time.  I
1593        // believe that there is no actual remotely exploitable
1594        // side-channel here however.  It could be worth analyzing in
1595        // the future.
1596        //
1597        // This code will give the wrong result if the total of all weights
1598        // can exceed u64::MAX.  We make sure that can't happen when we
1599        // set up `self.weights`.
1600        match relays[..].choose_weighted(rng, |r| self.weights.weight_rs_for_role(r.rs, role)) {
1601            Ok(relay) => Some(relay.clone()),
1602            Err(WeightError::InsufficientNonZero) => {
1603                if relays.is_empty() {
1604                    None
1605                } else {
1606                    warn!(?self.weights, ?role,
1607                          "After filtering, all {} relays had zero weight. Choosing one at random. See bug #1907.",
1608                          relays.len());
1609                    relays.choose(rng).cloned()
1610                }
1611            }
1612            Err(e) => {
1613                warn_report!(e, "Unexpected error while sampling a relay");
1614                None
1615            }
1616        }
1617    }
1618
1619    /// Choose `n` relay at random.
1620    ///
1621    /// Each relay is chosen with probability proportional to its weight
1622    /// in the role `role`, and is only selected if the predicate `usable`
1623    /// returns true for it.
1624    ///
1625    /// Relays are chosen without replacement: no relay will be
1626    /// returned twice. Therefore, the resulting vector may be smaller
1627    /// than `n` if we happen to have fewer than `n` appropriate relays.
1628    ///
1629    /// This function returns an empty vector if (and only if) there
1630    /// are no relays with nonzero weight where `usable` returned
1631    /// true.
1632    #[allow(clippy::cognitive_complexity)] // all due to tracing crate.
1633    pub fn pick_n_relays<'a, R, P>(
1634        &'a self,
1635        rng: &mut R,
1636        n: usize,
1637        role: WeightRole,
1638        usable: P,
1639    ) -> Vec<Relay<'a>>
1640    where
1641        R: rand::Rng,
1642        P: FnMut(&Relay<'a>) -> bool,
1643    {
1644        let relays: Vec<_> = self.relays().filter(usable).collect();
1645        // NOTE: See discussion in pick_relay().
1646        let mut relays = match relays[..].choose_multiple_weighted(rng, n, |r| {
1647            self.weights.weight_rs_for_role(r.rs, role) as f64
1648        }) {
1649            Err(WeightError::InsufficientNonZero) => {
1650                // Too few relays had nonzero weights: return all of those that are okay.
1651                // (This is behavior used to come up with rand 0.9; it no longer does.
1652                // We still detect it.)
1653                let remaining: Vec<_> = relays
1654                    .iter()
1655                    .filter(|r| self.weights.weight_rs_for_role(r.rs, role) > 0)
1656                    .cloned()
1657                    .collect();
1658                if remaining.is_empty() {
1659                    warn!(?self.weights, ?role,
1660                          "After filtering, all {} relays had zero weight! Picking some at random. See bug #1907.",
1661                          relays.len());
1662                    if relays.len() >= n {
1663                        relays.choose_multiple(rng, n).cloned().collect()
1664                    } else {
1665                        relays
1666                    }
1667                } else {
1668                    warn!(?self.weights, ?role,
1669                          "After filtering, only had {}/{} relays with nonzero weight. Returning them all. See bug #1907.",
1670                           remaining.len(), relays.len());
1671                    remaining
1672                }
1673            }
1674            Err(e) => {
1675                warn_report!(e, "Unexpected error while sampling a set of relays");
1676                Vec::new()
1677            }
1678            Ok(iter) => {
1679                let selection: Vec<_> = iter.map(Relay::clone).collect();
1680                if selection.len() < n && selection.len() < relays.len() {
1681                    warn!(?self.weights, ?role,
1682                          "choose_multiple_weighted returned only {returned}, despite requesting {n}, \
1683                          and having {filtered_len} available after filtering. See bug #1907.",
1684                          returned=selection.len(), filtered_len=relays.len());
1685                }
1686                selection
1687            }
1688        };
1689        relays.shuffle(rng);
1690        relays
1691    }
1692
1693    /// Compute the weight with which `relay` will be selected for a given
1694    /// `role`.
1695    pub fn relay_weight<'a>(&'a self, relay: &Relay<'a>, role: WeightRole) -> RelayWeight {
1696        RelayWeight(self.weights.weight_rs_for_role(relay.rs, role))
1697    }
1698
1699    /// Compute the total weight with which any relay matching `usable`
1700    /// will be selected for a given `role`.
1701    ///
1702    /// Note: because this function is used to assess the total
1703    /// properties of the consensus, the `usable` predicate takes a
1704    /// [`MdRouterStatus`] rather than a [`Relay`].
1705    pub fn total_weight<P>(&self, role: WeightRole, usable: P) -> RelayWeight
1706    where
1707        P: Fn(&UncheckedRelay<'_>) -> bool,
1708    {
1709        self.all_relays()
1710            .filter_map(|unchecked| {
1711                if usable(&unchecked) {
1712                    Some(RelayWeight(
1713                        self.weights.weight_rs_for_role(unchecked.rs, role),
1714                    ))
1715                } else {
1716                    None
1717                }
1718            })
1719            .sum()
1720    }
1721
1722    /// Compute the weight with which a relay with ID `rsa_id` would be
1723    /// selected for a given `role`.
1724    ///
1725    /// Note that weight returned by this function assumes that the
1726    /// relay with that ID is actually [usable](NetDir#usable); if it isn't usable,
1727    /// then other weight-related functions will call its weight zero.
1728    pub fn weight_by_rsa_id(&self, rsa_id: &RsaIdentity, role: WeightRole) -> Option<RelayWeight> {
1729        self.by_rsa_id_unchecked(rsa_id)
1730            .map(|unchecked| RelayWeight(self.weights.weight_rs_for_role(unchecked.rs, role)))
1731    }
1732
1733    /// Return all relays in this NetDir known to be in the same family as
1734    /// `relay`.
1735    ///
1736    /// This list of members will **not** necessarily include `relay` itself.
1737    ///
1738    /// # Limitations
1739    ///
1740    /// Two relays only belong to the same family if _each_ relay
1741    /// claims to share a family with the other.  But if we are
1742    /// missing a microdescriptor for one of the relays listed by this
1743    /// relay, we cannot know whether it acknowledges family
1744    /// membership with this relay or not.  Therefore, this function
1745    /// can omit family members for which there is not (as yet) any
1746    /// Relay object.
1747    pub fn known_family_members<'a>(
1748        &'a self,
1749        relay: &'a Relay<'a>,
1750    ) -> impl Iterator<Item = Relay<'a>> {
1751        let relay_rsa_id = relay.rsa_id();
1752        relay.md.family().members().filter_map(move |other_rsa_id| {
1753            self.by_rsa_id(other_rsa_id)
1754                .filter(|other_relay| other_relay.md.family().contains(relay_rsa_id))
1755        })
1756    }
1757
1758    /// Return the current hidden service directory "time period".
1759    ///
1760    /// Specifically, this returns the time period that contains the beginning
1761    /// of the validity period of this `NetDir`'s consensus.  That time period
1762    /// is the one we use when acting as an hidden service client.
1763    #[cfg(feature = "hs-common")]
1764    pub fn hs_time_period(&self) -> TimePeriod {
1765        self.hsdir_rings.current.time_period()
1766    }
1767
1768    /// Return the [`HsDirParams`] of all the relevant hidden service directory "time periods"
1769    ///
1770    /// This includes the current time period (as from
1771    /// [`.hs_time_period`](NetDir::hs_time_period))
1772    /// plus additional time periods that we publish descriptors for when we are
1773    /// acting as a hidden service.
1774    #[cfg(feature = "hs-service")]
1775    pub fn hs_all_time_periods(&self) -> Vec<HsDirParams> {
1776        self.hsdir_rings
1777            .iter()
1778            .map(|r| r.params().clone())
1779            .collect()
1780    }
1781
1782    /// Return the relays in this network directory that will be used as hidden service directories
1783    ///
1784    /// These are suitable to retrieve a given onion service's descriptor at a given time period.
1785    #[cfg(feature = "hs-common")]
1786    pub fn hs_dirs_download<'r, R>(
1787        &'r self,
1788        hsid: HsBlindId,
1789        period: TimePeriod,
1790        rng: &mut R,
1791    ) -> std::result::Result<Vec<Relay<'r>>, Bug>
1792    where
1793        R: rand::Rng,
1794    {
1795        // Algorithm:
1796        //
1797        // 1. Determine which HsDirRing to use, based on the time period.
1798        // 2. Find the shared random value that's associated with that HsDirRing.
1799        // 3. Choose spread = the parameter `hsdir_spread_fetch`
1800        // 4. Let n_replicas = the parameter `hsdir_n_replicas`.
1801        // 5. Initialize Dirs = []
1802        // 6. for idx in 1..=n_replicas:
1803        //       - let H = hsdir_ring::onion_service_index(id, replica, rand,
1804        //         period).
1805        //       - Find the position of H within hsdir_ring.
1806        //       - Take elements from hsdir_ring starting at that position,
1807        //         adding them to Dirs until we have added `spread` new elements
1808        //         that were not there before.
1809        // 7. Shuffle Dirs
1810        // 8. return Dirs.
1811
1812        let spread = self.spread(HsDirOp::Download);
1813
1814        // When downloading, only look at relays on current ring.
1815        let ring = &self.hsdir_rings.current;
1816
1817        if ring.params().time_period != period {
1818            return Err(internal!(
1819                "our current ring is not associated with the requested time period!"
1820            ));
1821        }
1822
1823        let mut hs_dirs = self.select_hsdirs(hsid, ring, spread).collect_vec();
1824
1825        // When downloading, the order of the returned relays is random.
1826        hs_dirs.shuffle(rng);
1827
1828        Ok(hs_dirs)
1829    }
1830
1831    /// Return the relays in this network directory that will be used as hidden service directories
1832    ///
1833    /// Returns the relays that are suitable for storing a given onion service's descriptors at the
1834    /// given time period.
1835    #[cfg(feature = "hs-service")]
1836    pub fn hs_dirs_upload(
1837        &self,
1838        hsid: HsBlindId,
1839        period: TimePeriod,
1840    ) -> std::result::Result<impl Iterator<Item = Relay<'_>>, Bug> {
1841        // Algorithm:
1842        //
1843        // 1. Choose spread = the parameter `hsdir_spread_store`
1844        // 2. Determine which HsDirRing to use, based on the time period.
1845        // 3. Find the shared random value that's associated with that HsDirRing.
1846        // 4. Let n_replicas = the parameter `hsdir_n_replicas`.
1847        // 5. Initialize Dirs = []
1848        // 6. for idx in 1..=n_replicas:
1849        //       - let H = hsdir_ring::onion_service_index(id, replica, rand,
1850        //         period).
1851        //       - Find the position of H within hsdir_ring.
1852        //       - Take elements from hsdir_ring starting at that position,
1853        //         adding them to Dirs until we have added `spread` new elements
1854        //         that were not there before.
1855        // 3. return Dirs.
1856        let spread = self.spread(HsDirOp::Upload);
1857
1858        // For each HsBlindId, determine which HsDirRing to use.
1859        let rings = self
1860            .hsdir_rings
1861            .iter()
1862            .filter_map(move |ring| {
1863                // Make sure the ring matches the TP of the hsid it's matched with.
1864                (ring.params().time_period == period).then_some((ring, hsid, period))
1865            })
1866            .collect::<Vec<_>>();
1867
1868        // The specified period should have an associated ring.
1869        if !rings.iter().any(|(_, _, tp)| *tp == period) {
1870            return Err(internal!(
1871                "the specified time period does not have an associated ring"
1872            ));
1873        };
1874
1875        // Now that we've matched each `hsid` with the ring associated with its TP, we can start
1876        // selecting replicas from each ring.
1877        Ok(rings.into_iter().flat_map(move |(ring, hsid, period)| {
1878            assert_eq!(period, ring.params().time_period());
1879            self.select_hsdirs(hsid, ring, spread)
1880        }))
1881    }
1882
1883    /// Return the relays in this network directory that will be used as hidden service directories
1884    ///
1885    /// Depending on `op`,
1886    /// these are suitable to either store, or retrieve, a
1887    /// given onion service's descriptor at a given time period.
1888    ///
1889    /// When `op` is `Download`, the order is random.
1890    /// When `op` is `Upload`, the order is not specified.
1891    ///
1892    /// Return an error if the time period is not one returned by
1893    /// `onion_service_time_period` or `onion_service_secondary_time_periods`.
1894    //
1895    // TODO: make HsDirOp pub(crate) once this is removed
1896    #[cfg(feature = "hs-common")]
1897    #[deprecated(note = "Use hs_dirs_upload or hs_dirs_download instead")]
1898    pub fn hs_dirs<'r, R>(&'r self, hsid: &HsBlindId, op: HsDirOp, rng: &mut R) -> Vec<Relay<'r>>
1899    where
1900        R: rand::Rng,
1901    {
1902        // Algorithm:
1903        //
1904        // 1. Determine which HsDirRing to use, based on the time period.
1905        // 2. Find the shared random value that's associated with that HsDirRing.
1906        // 3. Choose spread = the parameter `hsdir_spread_store` or
1907        //    `hsdir_spread_fetch` based on `op`.
1908        // 4. Let n_replicas = the parameter `hsdir_n_replicas`.
1909        // 5. Initialize Dirs = []
1910        // 6. for idx in 1..=n_replicas:
1911        //       - let H = hsdir_ring::onion_service_index(id, replica, rand,
1912        //         period).
1913        //       - Find the position of H within hsdir_ring.
1914        //       - Take elements from hsdir_ring starting at that position,
1915        //         adding them to Dirs until we have added `spread` new elements
1916        //         that were not there before.
1917        // 7. return Dirs.
1918        let n_replicas = self
1919            .params
1920            .hsdir_n_replicas
1921            .get()
1922            .try_into()
1923            .expect("BoundedInt did not enforce bounds");
1924
1925        let spread = match op {
1926            HsDirOp::Download => self.params.hsdir_spread_fetch,
1927            #[cfg(feature = "hs-service")]
1928            HsDirOp::Upload => self.params.hsdir_spread_store,
1929        };
1930
1931        let spread = spread
1932            .get()
1933            .try_into()
1934            .expect("BoundedInt did not enforce bounds!");
1935
1936        // TODO: I may be wrong here but I suspect that this function may
1937        // need refactoring so that it does not look at _all_ of the HsDirRings,
1938        // but only at the ones that corresponds to time periods for which
1939        // HsBlindId is valid.  Or I could be mistaken, in which case we should
1940        // have a comment to explain why I am, since the logic is subtle.
1941        // (For clients, there is only one ring.) -nickm
1942        //
1943        // (Actually, there is no need to follow through with the above TODO,
1944        // since this function is deprecated, and not used anywhere but the
1945        // tests.)
1946
1947        let mut hs_dirs = self
1948            .hsdir_rings
1949            .iter_for_op(op)
1950            .cartesian_product(1..=n_replicas) // 1-indexed !
1951            .flat_map({
1952                let mut selected_nodes = HashSet::new();
1953
1954                move |(ring, replica): (&HsDirRing, u8)| {
1955                    let hsdir_idx = hsdir_ring::service_hsdir_index(hsid, replica, ring.params());
1956
1957                    ring.ring_items_at(hsdir_idx, spread, |(hsdir_idx, _)| {
1958                        // According to rend-spec 2.2.3:
1959                        //                                                  ... If any of those
1960                        // nodes have already been selected for a lower-numbered replica of the
1961                        // service, any nodes already chosen are disregarded (i.e. skipped over)
1962                        // when choosing a replica's hsdir_spread_store nodes.
1963                        selected_nodes.insert(*hsdir_idx)
1964                    })
1965                    .collect::<Vec<_>>()
1966                }
1967            })
1968            .filter_map(|(_hsdir_idx, rs_idx)| {
1969                // This ought not to be None but let's not panic or bail if it is
1970                self.relay_by_rs_idx(*rs_idx)
1971            })
1972            .collect_vec();
1973
1974        match op {
1975            HsDirOp::Download => {
1976                // When `op` is `Download`, the order is random.
1977                hs_dirs.shuffle(rng);
1978            }
1979            #[cfg(feature = "hs-service")]
1980            HsDirOp::Upload => {
1981                // When `op` is `Upload`, the order is not specified.
1982            }
1983        }
1984
1985        hs_dirs
1986    }
1987}
1988
1989impl MdReceiver for NetDir {
1990    fn missing_microdescs(&self) -> Box<dyn Iterator<Item = &MdDigest> + '_> {
1991        Box::new(self.rsidx_by_missing.keys())
1992    }
1993    fn add_microdesc(&mut self, md: Microdesc) -> bool {
1994        self.add_arc_microdesc(Arc::new(md))
1995    }
1996    fn n_missing(&self) -> usize {
1997        self.rsidx_by_missing.len()
1998    }
1999}
2000
2001impl<'a> UncheckedRelay<'a> {
2002    /// Return an [`UncheckedRelayDetails`](details::UncheckedRelayDetails) for this relay.
2003    ///
2004    /// Callers should generally avoid using this information directly if they can;
2005    /// it's better to use a higher-level function that exposes semantic information
2006    /// rather than these properties.
2007    pub fn low_level_details(&self) -> details::UncheckedRelayDetails<'_> {
2008        details::UncheckedRelayDetails(self)
2009    }
2010
2011    /// Return true if this relay is valid and [usable](NetDir#usable).
2012    ///
2013    /// This function should return `true` for every Relay we expose
2014    /// to the user.
2015    pub fn is_usable(&self) -> bool {
2016        // No need to check for 'valid' or 'running': they are implicit.
2017        self.md.is_some() && self.rs.ed25519_id_is_usable()
2018    }
2019    /// If this is [usable](NetDir#usable), return a corresponding Relay object.
2020    pub fn into_relay(self) -> Option<Relay<'a>> {
2021        if self.is_usable() {
2022            Some(Relay {
2023                rs: self.rs,
2024                md: self.md?,
2025                #[cfg(feature = "geoip")]
2026                cc: self.cc,
2027            })
2028        } else {
2029            None
2030        }
2031    }
2032
2033    /// Return true if this relay is a hidden service directory
2034    ///
2035    /// Ie, if it is to be included in the hsdir ring.
2036    #[cfg(feature = "hs-common")]
2037    pub(crate) fn is_hsdir_for_ring(&self) -> bool {
2038        // TODO are there any other flags should we check?
2039        // rend-spec-v3 2.2.3 says just
2040        //   "each node listed in the current consensus with the HSDir flag"
2041        // Do we need to check ed25519_id_is_usable ?
2042        // See also https://gitlab.torproject.org/tpo/core/arti/-/issues/504
2043        self.rs.is_flagged_hsdir()
2044    }
2045}
2046
2047impl<'a> Relay<'a> {
2048    /// Return a [`RelayDetails`](details::RelayDetails) for this relay.
2049    ///
2050    /// Callers should generally avoid using this information directly if they can;
2051    /// it's better to use a higher-level function that exposes semantic information
2052    /// rather than these properties.
2053    pub fn low_level_details(&self) -> details::RelayDetails<'_> {
2054        details::RelayDetails(self)
2055    }
2056
2057    /// Return the Ed25519 ID for this relay.
2058    pub fn id(&self) -> &Ed25519Identity {
2059        self.md.ed25519_id()
2060    }
2061    /// Return the RsaIdentity for this relay.
2062    pub fn rsa_id(&self) -> &RsaIdentity {
2063        self.rs.rsa_identity()
2064    }
2065
2066    /// Return a reference to this relay's "router status" entry in
2067    /// the consensus.
2068    ///
2069    /// The router status entry contains information about the relay
2070    /// that the authorities voted on directly.  For most use cases,
2071    /// you shouldn't need them.
2072    ///
2073    /// This function is only available if the crate was built with
2074    /// its `experimental-api` feature.
2075    #[cfg(feature = "experimental-api")]
2076    pub fn rs(&self) -> &netstatus::MdRouterStatus {
2077        self.rs
2078    }
2079    /// Return a reference to this relay's "microdescriptor" entry in
2080    /// the consensus.
2081    ///
2082    /// A "microdescriptor" is a synopsis of the information about a relay,
2083    /// used to determine its capabilities and route traffic through it.
2084    /// For most use cases, you shouldn't need it.
2085    ///
2086    /// This function is only available if the crate was built with
2087    /// its `experimental-api` feature.
2088    #[cfg(feature = "experimental-api")]
2089    pub fn md(&self) -> &Microdesc {
2090        self.md
2091    }
2092}
2093
2094/// An error value returned from [`NetDir::by_ids_detailed`].
2095#[cfg(feature = "hs-common")]
2096#[derive(Clone, Debug, thiserror::Error)]
2097#[non_exhaustive]
2098pub enum RelayLookupError {
2099    /// We found a relay whose presence indicates that the provided set of
2100    /// identities is impossible to resolve.
2101    #[error("Provided set of identities is impossible according to consensus.")]
2102    Impossible,
2103}
2104
2105impl<'a> HasAddrs for Relay<'a> {
2106    fn addrs(&self) -> &[std::net::SocketAddr] {
2107        self.rs.addrs()
2108    }
2109}
2110#[cfg(feature = "geoip")]
2111#[cfg_attr(docsrs, doc(cfg(feature = "geoip")))]
2112impl<'a> HasCountryCode for Relay<'a> {
2113    fn country_code(&self) -> Option<CountryCode> {
2114        self.cc
2115    }
2116}
2117impl<'a> tor_linkspec::HasRelayIdsLegacy for Relay<'a> {
2118    fn ed_identity(&self) -> &Ed25519Identity {
2119        self.id()
2120    }
2121    fn rsa_identity(&self) -> &RsaIdentity {
2122        self.rsa_id()
2123    }
2124}
2125
2126impl<'a> HasRelayIds for UncheckedRelay<'a> {
2127    fn identity(&self, key_type: RelayIdType) -> Option<RelayIdRef<'_>> {
2128        match key_type {
2129            RelayIdType::Ed25519 if self.rs.ed25519_id_is_usable() => {
2130                self.md.map(|m| m.ed25519_id().into())
2131            }
2132            RelayIdType::Rsa => Some(self.rs.rsa_identity().into()),
2133            _ => None,
2134        }
2135    }
2136}
2137#[cfg(feature = "geoip")]
2138impl<'a> HasCountryCode for UncheckedRelay<'a> {
2139    fn country_code(&self) -> Option<CountryCode> {
2140        self.cc
2141    }
2142}
2143
2144impl<'a> DirectChanMethodsHelper for Relay<'a> {}
2145impl<'a> ChanTarget for Relay<'a> {}
2146
2147impl<'a> tor_linkspec::CircTarget for Relay<'a> {
2148    fn ntor_onion_key(&self) -> &ll::pk::curve25519::PublicKey {
2149        self.md.ntor_key()
2150    }
2151    fn protovers(&self) -> &tor_protover::Protocols {
2152        self.rs.protovers()
2153    }
2154}
2155
2156#[cfg(test)]
2157mod test {
2158    // @@ begin test lint list maintained by maint/add_warning @@
2159    #![allow(clippy::bool_assert_comparison)]
2160    #![allow(clippy::clone_on_copy)]
2161    #![allow(clippy::dbg_macro)]
2162    #![allow(clippy::mixed_attributes_style)]
2163    #![allow(clippy::print_stderr)]
2164    #![allow(clippy::print_stdout)]
2165    #![allow(clippy::single_char_pattern)]
2166    #![allow(clippy::unwrap_used)]
2167    #![allow(clippy::unchecked_duration_subtraction)]
2168    #![allow(clippy::useless_vec)]
2169    #![allow(clippy::needless_pass_by_value)]
2170    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
2171    #![allow(clippy::cognitive_complexity)]
2172    use super::*;
2173    use crate::testnet::*;
2174    use float_eq::assert_float_eq;
2175    use std::collections::HashSet;
2176    use std::time::Duration;
2177    use tor_basic_utils::test_rng::{self, testing_rng};
2178    use tor_linkspec::{RelayIdType, RelayIds};
2179
2180    #[cfg(feature = "hs-common")]
2181    fn dummy_hs_blind_id() -> HsBlindId {
2182        let hsid = [2, 1, 1, 1].iter().cycle().take(32).cloned().collect_vec();
2183        let hsid = Ed25519Identity::new(hsid[..].try_into().unwrap());
2184        HsBlindId::from(hsid)
2185    }
2186
2187    // Basic functionality for a partial netdir: Add microdescriptors,
2188    // then you have a netdir.
2189    #[test]
2190    fn partial_netdir() {
2191        let (consensus, microdescs) = construct_network().unwrap();
2192        let dir = PartialNetDir::new(consensus, None);
2193
2194        // Check the lifetime
2195        let lifetime = dir.lifetime();
2196        assert_eq!(
2197            lifetime
2198                .valid_until()
2199                .duration_since(lifetime.valid_after())
2200                .unwrap(),
2201            Duration::new(86400, 0)
2202        );
2203
2204        // No microdescriptors, so we don't have enough paths, and can't
2205        // advance.
2206        assert!(!dir.have_enough_paths());
2207        let mut dir = match dir.unwrap_if_sufficient() {
2208            Ok(_) => panic!(),
2209            Err(d) => d,
2210        };
2211
2212        let missing: HashSet<_> = dir.missing_microdescs().collect();
2213        assert_eq!(missing.len(), 40);
2214        assert_eq!(missing.len(), dir.netdir.c_relays().len());
2215        for md in &microdescs {
2216            assert!(missing.contains(md.digest()));
2217        }
2218
2219        // Now add all the mds and try again.
2220        for md in microdescs {
2221            let wanted = dir.add_microdesc(md);
2222            assert!(wanted);
2223        }
2224
2225        let missing: HashSet<_> = dir.missing_microdescs().collect();
2226        assert!(missing.is_empty());
2227        assert!(dir.have_enough_paths());
2228        let _complete = match dir.unwrap_if_sufficient() {
2229            Ok(d) => d,
2230            Err(_) => panic!(),
2231        };
2232    }
2233
2234    #[test]
2235    fn override_params() {
2236        let (consensus, _microdescs) = construct_network().unwrap();
2237        let override_p = "bwweightscale=2 doesnotexist=77 circwindow=500"
2238            .parse()
2239            .unwrap();
2240        let dir = PartialNetDir::new(consensus.clone(), Some(&override_p));
2241        let params = &dir.netdir.params;
2242        assert_eq!(params.bw_weight_scale.get(), 2);
2243        assert_eq!(params.circuit_window.get(), 500_i32);
2244
2245        // try again without the override.
2246        let dir = PartialNetDir::new(consensus, None);
2247        let params = &dir.netdir.params;
2248        assert_eq!(params.bw_weight_scale.get(), 1_i32);
2249        assert_eq!(params.circuit_window.get(), 1000_i32);
2250    }
2251
2252    #[test]
2253    fn fill_from_previous() {
2254        let (consensus, microdescs) = construct_network().unwrap();
2255
2256        let mut dir = PartialNetDir::new(consensus.clone(), None);
2257        for md in microdescs.iter().skip(2) {
2258            let wanted = dir.add_microdesc(md.clone());
2259            assert!(wanted);
2260        }
2261        let dir1 = dir.unwrap_if_sufficient().unwrap();
2262        assert_eq!(dir1.missing_microdescs().count(), 2);
2263
2264        let mut dir = PartialNetDir::new(consensus, None);
2265        assert_eq!(dir.missing_microdescs().count(), 40);
2266        dir.fill_from_previous_netdir(Arc::new(dir1));
2267        assert_eq!(dir.missing_microdescs().count(), 2);
2268    }
2269
2270    #[test]
2271    fn path_count() {
2272        let low_threshold = "min_paths_for_circs_pct=64".parse().unwrap();
2273        let high_threshold = "min_paths_for_circs_pct=65".parse().unwrap();
2274
2275        let (consensus, microdescs) = construct_network().unwrap();
2276
2277        let mut dir = PartialNetDir::new(consensus.clone(), Some(&low_threshold));
2278        for (pos, md) in microdescs.iter().enumerate() {
2279            if pos % 7 == 2 {
2280                continue; // skip a few relays.
2281            }
2282            dir.add_microdesc(md.clone());
2283        }
2284        let dir = dir.unwrap_if_sufficient().unwrap();
2285
2286        // We  have 40 relays that we know about from the consensus.
2287        assert_eq!(dir.all_relays().count(), 40);
2288
2289        // But only 34 are usable.
2290        assert_eq!(dir.relays().count(), 34);
2291
2292        // For guards: mds 20..=39 correspond to Guard relays.
2293        // Their bandwidth is 2*(1000+2000+...10000) = 110_000.
2294        // We skipped 23, 30, and 37.  They have bandwidth
2295        // 4000 + 1000 + 8000 = 13_000.  So our fractional bandwidth
2296        // should be (110-13)/110.
2297        let f = dir.frac_for_role(WeightRole::Guard, |u| u.rs.is_flagged_guard());
2298        assert!(((97.0 / 110.0) - f).abs() < 0.000001);
2299
2300        // For exits: mds 10..=19 and 30..=39 correspond to Exit relays.
2301        // We skipped 16, 30,  and 37. Per above our fractional bandwidth is
2302        // (110-16)/110.
2303        let f = dir.frac_for_role(WeightRole::Exit, |u| u.rs.is_flagged_exit());
2304        assert!(((94.0 / 110.0) - f).abs() < 0.000001);
2305
2306        // For middles: all relays are middles. We skipped 2, 9, 16,
2307        // 23, 30, and 37. Per above our fractional bandwidth is
2308        // (220-33)/220
2309        let f = dir.frac_for_role(WeightRole::Middle, |_| true);
2310        assert!(((187.0 / 220.0) - f).abs() < 0.000001);
2311
2312        // Multiplying those together, we get the fraction of paths we can
2313        // build at ~0.64052066, which is above the threshold we set above for
2314        // MinPathsForCircsPct.
2315        let f = dir.frac_usable_paths();
2316        assert!((f - 0.64052066).abs() < 0.000001);
2317
2318        // But if we try again with a slightly higher threshold...
2319        let mut dir = PartialNetDir::new(consensus, Some(&high_threshold));
2320        for (pos, md) in microdescs.into_iter().enumerate() {
2321            if pos % 7 == 2 {
2322                continue; // skip a few relays.
2323            }
2324            dir.add_microdesc(md);
2325        }
2326        assert!(dir.unwrap_if_sufficient().is_err());
2327    }
2328
2329    /// Return a 3-tuple for use by `test_pick_*()` of an Rng, a number of
2330    /// iterations, and a tolerance.
2331    ///
2332    /// If the Rng is deterministic (the default), we can use a faster setup,
2333    /// with a higher tolerance and fewer iterations.  But if you've explicitly
2334    /// opted into randomization (or are replaying a seed from an earlier
2335    /// randomized test), we give you more iterations and a tighter tolerance.
2336    fn testing_rng_with_tolerances() -> (impl rand::Rng, usize, f64) {
2337        // Use a deterministic RNG if none is specified, since this is slow otherwise.
2338        let config = test_rng::Config::from_env().unwrap_or(test_rng::Config::Deterministic);
2339        let (iters, tolerance) = match config {
2340            test_rng::Config::Deterministic => (5000, 0.02),
2341            _ => (50000, 0.01),
2342        };
2343        (config.into_rng(), iters, tolerance)
2344    }
2345
2346    #[test]
2347    fn test_pick() {
2348        let (consensus, microdescs) = construct_network().unwrap();
2349        let mut dir = PartialNetDir::new(consensus, None);
2350        for md in microdescs.into_iter() {
2351            let wanted = dir.add_microdesc(md.clone());
2352            assert!(wanted);
2353        }
2354        let dir = dir.unwrap_if_sufficient().unwrap();
2355
2356        let (mut rng, total, tolerance) = testing_rng_with_tolerances();
2357
2358        let mut picked = [0_isize; 40];
2359        for _ in 0..total {
2360            let r = dir.pick_relay(&mut rng, WeightRole::Middle, |r| {
2361                r.low_level_details().supports_exit_port_ipv4(80)
2362            });
2363            let r = r.unwrap();
2364            let id_byte = r.identity(RelayIdType::Rsa).unwrap().as_bytes()[0];
2365            picked[id_byte as usize] += 1;
2366        }
2367        // non-exits should never get picked.
2368        picked[0..10].iter().for_each(|x| assert_eq!(*x, 0));
2369        picked[20..30].iter().for_each(|x| assert_eq!(*x, 0));
2370
2371        let picked_f: Vec<_> = picked.iter().map(|x| *x as f64 / total as f64).collect();
2372
2373        // We didn't we any non-default weights, so the other relays get
2374        // weighted proportional to their bandwidth.
2375        assert_float_eq!(picked_f[19], (10.0 / 110.0), abs <= tolerance);
2376        assert_float_eq!(picked_f[38], (9.0 / 110.0), abs <= tolerance);
2377        assert_float_eq!(picked_f[39], (10.0 / 110.0), abs <= tolerance);
2378    }
2379
2380    #[test]
2381    fn test_pick_multiple() {
2382        // This is mostly a copy of test_pick, except that it uses
2383        // pick_n_relays to pick several relays at once.
2384
2385        let dir = construct_netdir().unwrap_if_sufficient().unwrap();
2386
2387        let (mut rng, total, tolerance) = testing_rng_with_tolerances();
2388
2389        let mut picked = [0_isize; 40];
2390        for _ in 0..total / 4 {
2391            let relays = dir.pick_n_relays(&mut rng, 4, WeightRole::Middle, |r| {
2392                r.low_level_details().supports_exit_port_ipv4(80)
2393            });
2394            assert_eq!(relays.len(), 4);
2395            for r in relays {
2396                let id_byte = r.identity(RelayIdType::Rsa).unwrap().as_bytes()[0];
2397                picked[id_byte as usize] += 1;
2398            }
2399        }
2400        // non-exits should never get picked.
2401        picked[0..10].iter().for_each(|x| assert_eq!(*x, 0));
2402        picked[20..30].iter().for_each(|x| assert_eq!(*x, 0));
2403
2404        let picked_f: Vec<_> = picked.iter().map(|x| *x as f64 / total as f64).collect();
2405
2406        // We didn't we any non-default weights, so the other relays get
2407        // weighted proportional to their bandwidth.
2408        assert_float_eq!(picked_f[19], (10.0 / 110.0), abs <= tolerance);
2409        assert_float_eq!(picked_f[36], (7.0 / 110.0), abs <= tolerance);
2410        assert_float_eq!(picked_f[39], (10.0 / 110.0), abs <= tolerance);
2411    }
2412
2413    #[test]
2414    fn subnets() {
2415        let cfg = SubnetConfig::default();
2416
2417        fn same_net(cfg: &SubnetConfig, a: &str, b: &str) -> bool {
2418            cfg.addrs_in_same_subnet(&a.parse().unwrap(), &b.parse().unwrap())
2419        }
2420
2421        assert!(same_net(&cfg, "127.15.3.3", "127.15.9.9"));
2422        assert!(!same_net(&cfg, "127.15.3.3", "127.16.9.9"));
2423
2424        assert!(!same_net(&cfg, "127.15.3.3", "127::"));
2425
2426        assert!(same_net(&cfg, "ffff:ffff:90:33::", "ffff:ffff:91:34::"));
2427        assert!(!same_net(&cfg, "ffff:ffff:90:33::", "ffff:fffe:91:34::"));
2428
2429        let cfg = SubnetConfig {
2430            subnets_family_v4: 32,
2431            subnets_family_v6: 128,
2432        };
2433        assert!(!same_net(&cfg, "127.15.3.3", "127.15.9.9"));
2434        assert!(!same_net(&cfg, "ffff:ffff:90:33::", "ffff:ffff:91:34::"));
2435
2436        assert!(same_net(&cfg, "127.0.0.1", "127.0.0.1"));
2437        assert!(!same_net(&cfg, "127.0.0.1", "127.0.0.2"));
2438        assert!(same_net(&cfg, "ffff:ffff:90:33::", "ffff:ffff:90:33::"));
2439
2440        let cfg = SubnetConfig {
2441            subnets_family_v4: 33,
2442            subnets_family_v6: 129,
2443        };
2444        assert!(!same_net(&cfg, "127.0.0.1", "127.0.0.1"));
2445        assert!(!same_net(&cfg, "::", "::"));
2446    }
2447
2448    #[test]
2449    fn subnet_union() {
2450        let cfg1 = SubnetConfig {
2451            subnets_family_v4: 16,
2452            subnets_family_v6: 64,
2453        };
2454        let cfg2 = SubnetConfig {
2455            subnets_family_v4: 24,
2456            subnets_family_v6: 32,
2457        };
2458        let a1 = "1.2.3.4".parse().unwrap();
2459        let a2 = "1.2.10.10".parse().unwrap();
2460
2461        let a3 = "ffff:ffff::7".parse().unwrap();
2462        let a4 = "ffff:ffff:1234::8".parse().unwrap();
2463
2464        assert_eq!(cfg1.addrs_in_same_subnet(&a1, &a2), true);
2465        assert_eq!(cfg2.addrs_in_same_subnet(&a1, &a2), false);
2466
2467        assert_eq!(cfg1.addrs_in_same_subnet(&a3, &a4), false);
2468        assert_eq!(cfg2.addrs_in_same_subnet(&a3, &a4), true);
2469
2470        let cfg_u = cfg1.union(&cfg2);
2471        assert_eq!(
2472            cfg_u,
2473            SubnetConfig {
2474                subnets_family_v4: 16,
2475                subnets_family_v6: 32,
2476            }
2477        );
2478        assert_eq!(cfg_u.addrs_in_same_subnet(&a1, &a2), true);
2479        assert_eq!(cfg_u.addrs_in_same_subnet(&a3, &a4), true);
2480
2481        assert_eq!(cfg1.union(&cfg1), cfg1);
2482
2483        assert_eq!(cfg1.union(&SubnetConfig::no_addresses_match()), cfg1);
2484    }
2485
2486    #[test]
2487    fn relay_funcs() {
2488        let (consensus, microdescs) = construct_custom_network(
2489            |pos, nb, _| {
2490                if pos == 15 {
2491                    nb.rs.add_or_port("[f0f0::30]:9001".parse().unwrap());
2492                } else if pos == 20 {
2493                    nb.rs.add_or_port("[f0f0::3131]:9001".parse().unwrap());
2494                }
2495            },
2496            None,
2497        )
2498        .unwrap();
2499        let subnet_config = SubnetConfig::default();
2500        let all_family_info = FamilyRules::all_family_info();
2501        let mut dir = PartialNetDir::new(consensus, None);
2502        for md in microdescs.into_iter() {
2503            let wanted = dir.add_microdesc(md.clone());
2504            assert!(wanted);
2505        }
2506        let dir = dir.unwrap_if_sufficient().unwrap();
2507
2508        // Pick out a few relays by ID.
2509        let k0 = Ed25519Identity::from([0; 32]);
2510        let k1 = Ed25519Identity::from([1; 32]);
2511        let k2 = Ed25519Identity::from([2; 32]);
2512        let k3 = Ed25519Identity::from([3; 32]);
2513        let k10 = Ed25519Identity::from([10; 32]);
2514        let k15 = Ed25519Identity::from([15; 32]);
2515        let k20 = Ed25519Identity::from([20; 32]);
2516
2517        let r0 = dir.by_id(&k0).unwrap();
2518        let r1 = dir.by_id(&k1).unwrap();
2519        let r2 = dir.by_id(&k2).unwrap();
2520        let r3 = dir.by_id(&k3).unwrap();
2521        let r10 = dir.by_id(&k10).unwrap();
2522        let r15 = dir.by_id(&k15).unwrap();
2523        let r20 = dir.by_id(&k20).unwrap();
2524
2525        assert_eq!(r0.id(), &[0; 32].into());
2526        assert_eq!(r0.rsa_id(), &[0; 20].into());
2527        assert_eq!(r1.id(), &[1; 32].into());
2528        assert_eq!(r1.rsa_id(), &[1; 20].into());
2529
2530        assert!(r0.same_relay_ids(&r0));
2531        assert!(r1.same_relay_ids(&r1));
2532        assert!(!r1.same_relay_ids(&r0));
2533
2534        assert!(r0.low_level_details().is_dir_cache());
2535        assert!(!r1.low_level_details().is_dir_cache());
2536        assert!(r2.low_level_details().is_dir_cache());
2537        assert!(!r3.low_level_details().is_dir_cache());
2538
2539        assert!(!r0.low_level_details().supports_exit_port_ipv4(80));
2540        assert!(!r1.low_level_details().supports_exit_port_ipv4(80));
2541        assert!(!r2.low_level_details().supports_exit_port_ipv4(80));
2542        assert!(!r3.low_level_details().supports_exit_port_ipv4(80));
2543
2544        assert!(!r0.low_level_details().policies_allow_some_port());
2545        assert!(!r1.low_level_details().policies_allow_some_port());
2546        assert!(!r2.low_level_details().policies_allow_some_port());
2547        assert!(!r3.low_level_details().policies_allow_some_port());
2548        assert!(r10.low_level_details().policies_allow_some_port());
2549
2550        assert!(r0.low_level_details().in_same_family(&r0, all_family_info));
2551        assert!(r0.low_level_details().in_same_family(&r1, all_family_info));
2552        assert!(r1.low_level_details().in_same_family(&r0, all_family_info));
2553        assert!(r1.low_level_details().in_same_family(&r1, all_family_info));
2554        assert!(!r0.low_level_details().in_same_family(&r2, all_family_info));
2555        assert!(!r2.low_level_details().in_same_family(&r0, all_family_info));
2556        assert!(r2.low_level_details().in_same_family(&r2, all_family_info));
2557        assert!(r2.low_level_details().in_same_family(&r3, all_family_info));
2558
2559        assert!(r0.low_level_details().in_same_subnet(&r10, &subnet_config));
2560        assert!(r10.low_level_details().in_same_subnet(&r10, &subnet_config));
2561        assert!(r0.low_level_details().in_same_subnet(&r0, &subnet_config));
2562        assert!(r1.low_level_details().in_same_subnet(&r1, &subnet_config));
2563        assert!(!r1.low_level_details().in_same_subnet(&r2, &subnet_config));
2564        assert!(!r2.low_level_details().in_same_subnet(&r3, &subnet_config));
2565
2566        // Make sure IPv6 families work.
2567        let subnet_config = SubnetConfig {
2568            subnets_family_v4: 128,
2569            subnets_family_v6: 96,
2570        };
2571        assert!(r15.low_level_details().in_same_subnet(&r20, &subnet_config));
2572        assert!(!r15.low_level_details().in_same_subnet(&r1, &subnet_config));
2573
2574        // Make sure that subnet configs can be disabled.
2575        let subnet_config = SubnetConfig {
2576            subnets_family_v4: 255,
2577            subnets_family_v6: 255,
2578        };
2579        assert!(!r15.low_level_details().in_same_subnet(&r20, &subnet_config));
2580    }
2581
2582    #[test]
2583    fn test_badexit() {
2584        // make a netdir where relays 10-19 are badexit, and everybody
2585        // exits to 443 on IPv6.
2586        use tor_netdoc::doc::netstatus::RelayFlags;
2587        let netdir = construct_custom_netdir(|pos, nb, _| {
2588            if (10..20).contains(&pos) {
2589                nb.rs.add_flags(RelayFlags::BAD_EXIT);
2590            }
2591            nb.md.parse_ipv6_policy("accept 443").unwrap();
2592        })
2593        .unwrap()
2594        .unwrap_if_sufficient()
2595        .unwrap();
2596
2597        let e12 = netdir.by_id(&Ed25519Identity::from([12; 32])).unwrap();
2598        let e32 = netdir.by_id(&Ed25519Identity::from([32; 32])).unwrap();
2599
2600        assert!(!e12.low_level_details().supports_exit_port_ipv4(80));
2601        assert!(e32.low_level_details().supports_exit_port_ipv4(80));
2602
2603        assert!(!e12.low_level_details().supports_exit_port_ipv6(443));
2604        assert!(e32.low_level_details().supports_exit_port_ipv6(443));
2605        assert!(!e32.low_level_details().supports_exit_port_ipv6(555));
2606
2607        assert!(!e12.low_level_details().policies_allow_some_port());
2608        assert!(e32.low_level_details().policies_allow_some_port());
2609
2610        assert!(!e12.low_level_details().ipv4_policy().allows_some_port());
2611        assert!(!e12.low_level_details().ipv6_policy().allows_some_port());
2612        assert!(e32.low_level_details().ipv4_policy().allows_some_port());
2613        assert!(e32.low_level_details().ipv6_policy().allows_some_port());
2614
2615        assert!(
2616            e12.low_level_details()
2617                .ipv4_declared_policy()
2618                .allows_some_port()
2619        );
2620        assert!(
2621            e12.low_level_details()
2622                .ipv6_declared_policy()
2623                .allows_some_port()
2624        );
2625    }
2626
2627    #[cfg(feature = "experimental-api")]
2628    #[test]
2629    fn test_accessors() {
2630        let netdir = construct_netdir().unwrap_if_sufficient().unwrap();
2631
2632        let r4 = netdir.by_id(&Ed25519Identity::from([4; 32])).unwrap();
2633        let r16 = netdir.by_id(&Ed25519Identity::from([16; 32])).unwrap();
2634
2635        assert!(!r4.md().ipv4_policy().allows_some_port());
2636        assert!(r16.md().ipv4_policy().allows_some_port());
2637
2638        assert!(!r4.rs().is_flagged_exit());
2639        assert!(r16.rs().is_flagged_exit());
2640    }
2641
2642    #[test]
2643    fn test_by_id() {
2644        // Make a netdir that omits the microdescriptor for 0xDDDDDD...
2645        let netdir = construct_custom_netdir(|pos, nb, _| {
2646            nb.omit_md = pos == 13;
2647        })
2648        .unwrap();
2649
2650        let netdir = netdir.unwrap_if_sufficient().unwrap();
2651
2652        let r = netdir.by_id(&Ed25519Identity::from([0; 32])).unwrap();
2653        assert_eq!(r.id().as_bytes(), &[0; 32]);
2654
2655        assert!(netdir.by_id(&Ed25519Identity::from([13; 32])).is_none());
2656
2657        let r = netdir.by_rsa_id(&[12; 20].into()).unwrap();
2658        assert_eq!(r.rsa_id().as_bytes(), &[12; 20]);
2659        assert!(netdir.rsa_id_is_listed(&[12; 20].into()));
2660
2661        assert!(netdir.by_rsa_id(&[13; 20].into()).is_none());
2662
2663        assert!(netdir.by_rsa_id_unchecked(&[99; 20].into()).is_none());
2664        assert!(!netdir.rsa_id_is_listed(&[99; 20].into()));
2665
2666        let r = netdir.by_rsa_id_unchecked(&[13; 20].into()).unwrap();
2667        assert_eq!(r.rs.rsa_identity().as_bytes(), &[13; 20]);
2668        assert!(netdir.rsa_id_is_listed(&[13; 20].into()));
2669
2670        let pair_13_13 = RelayIds::builder()
2671            .ed_identity([13; 32].into())
2672            .rsa_identity([13; 20].into())
2673            .build()
2674            .unwrap();
2675        let pair_14_14 = RelayIds::builder()
2676            .ed_identity([14; 32].into())
2677            .rsa_identity([14; 20].into())
2678            .build()
2679            .unwrap();
2680        let pair_14_99 = RelayIds::builder()
2681            .ed_identity([14; 32].into())
2682            .rsa_identity([99; 20].into())
2683            .build()
2684            .unwrap();
2685
2686        let r = netdir.by_ids(&pair_13_13);
2687        assert!(r.is_none());
2688        let r = netdir.by_ids(&pair_14_14).unwrap();
2689        assert_eq!(r.identity(RelayIdType::Rsa).unwrap().as_bytes(), &[14; 20]);
2690        assert_eq!(
2691            r.identity(RelayIdType::Ed25519).unwrap().as_bytes(),
2692            &[14; 32]
2693        );
2694        let r = netdir.by_ids(&pair_14_99);
2695        assert!(r.is_none());
2696
2697        assert_eq!(
2698            netdir.id_pair_listed(&[13; 32].into(), &[13; 20].into()),
2699            None
2700        );
2701        assert_eq!(
2702            netdir.id_pair_listed(&[15; 32].into(), &[15; 20].into()),
2703            Some(true)
2704        );
2705        assert_eq!(
2706            netdir.id_pair_listed(&[15; 32].into(), &[99; 20].into()),
2707            Some(false)
2708        );
2709    }
2710
2711    #[test]
2712    #[cfg(feature = "hs-common")]
2713    fn test_by_ids_detailed() {
2714        // Make a netdir that omits the microdescriptor for 0xDDDDDD...
2715        let netdir = construct_custom_netdir(|pos, nb, _| {
2716            nb.omit_md = pos == 13;
2717        })
2718        .unwrap();
2719
2720        let netdir = netdir.unwrap_if_sufficient().unwrap();
2721
2722        let id13_13 = RelayIds::builder()
2723            .ed_identity([13; 32].into())
2724            .rsa_identity([13; 20].into())
2725            .build()
2726            .unwrap();
2727        let id15_15 = RelayIds::builder()
2728            .ed_identity([15; 32].into())
2729            .rsa_identity([15; 20].into())
2730            .build()
2731            .unwrap();
2732        let id15_99 = RelayIds::builder()
2733            .ed_identity([15; 32].into())
2734            .rsa_identity([99; 20].into())
2735            .build()
2736            .unwrap();
2737        let id99_15 = RelayIds::builder()
2738            .ed_identity([99; 32].into())
2739            .rsa_identity([15; 20].into())
2740            .build()
2741            .unwrap();
2742        let id99_99 = RelayIds::builder()
2743            .ed_identity([99; 32].into())
2744            .rsa_identity([99; 20].into())
2745            .build()
2746            .unwrap();
2747        let id15_xx = RelayIds::builder()
2748            .ed_identity([15; 32].into())
2749            .build()
2750            .unwrap();
2751        let idxx_15 = RelayIds::builder()
2752            .rsa_identity([15; 20].into())
2753            .build()
2754            .unwrap();
2755
2756        assert!(matches!(netdir.by_ids_detailed(&id13_13), Ok(None)));
2757        assert!(matches!(netdir.by_ids_detailed(&id15_15), Ok(Some(_))));
2758        assert!(matches!(
2759            netdir.by_ids_detailed(&id15_99),
2760            Err(RelayLookupError::Impossible)
2761        ));
2762        assert!(matches!(
2763            netdir.by_ids_detailed(&id99_15),
2764            Err(RelayLookupError::Impossible)
2765        ));
2766        assert!(matches!(netdir.by_ids_detailed(&id99_99), Ok(None)));
2767        assert!(matches!(netdir.by_ids_detailed(&id15_xx), Ok(Some(_))));
2768        assert!(matches!(netdir.by_ids_detailed(&idxx_15), Ok(Some(_))));
2769    }
2770
2771    #[test]
2772    fn weight_type() {
2773        let r0 = RelayWeight(0);
2774        let r100 = RelayWeight(100);
2775        let r200 = RelayWeight(200);
2776        let r300 = RelayWeight(300);
2777        assert_eq!(r100 + r200, r300);
2778        assert_eq!(r100.checked_div(r200), Some(0.5));
2779        assert!(r100.checked_div(r0).is_none());
2780        assert_eq!(r200.ratio(0.5), Some(r100));
2781        assert!(r200.ratio(-1.0).is_none());
2782    }
2783
2784    #[test]
2785    fn weight_accessors() {
2786        // Make a netdir that omits the microdescriptor for 0xDDDDDD...
2787        let netdir = construct_netdir().unwrap_if_sufficient().unwrap();
2788
2789        let g_total = netdir.total_weight(WeightRole::Guard, |r| r.rs.is_flagged_guard());
2790        // This is just the total guard weight, since all our Wxy = 1.
2791        assert_eq!(g_total, RelayWeight(110_000));
2792
2793        let g_total = netdir.total_weight(WeightRole::Guard, |_| false);
2794        assert_eq!(g_total, RelayWeight(0));
2795
2796        let relay = netdir.by_id(&Ed25519Identity::from([35; 32])).unwrap();
2797        assert!(relay.rs.is_flagged_guard());
2798        let w = netdir.relay_weight(&relay, WeightRole::Guard);
2799        assert_eq!(w, RelayWeight(6_000));
2800
2801        let w = netdir
2802            .weight_by_rsa_id(&[33; 20].into(), WeightRole::Guard)
2803            .unwrap();
2804        assert_eq!(w, RelayWeight(4_000));
2805
2806        assert!(
2807            netdir
2808                .weight_by_rsa_id(&[99; 20].into(), WeightRole::Guard)
2809                .is_none()
2810        );
2811    }
2812
2813    #[test]
2814    fn family_list() {
2815        let netdir = construct_custom_netdir(|pos, n, _| {
2816            if pos == 0x0a {
2817                n.md.family(
2818                    "$0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B \
2819                     $0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C \
2820                     $0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D"
2821                        .parse()
2822                        .unwrap(),
2823                );
2824            } else if pos == 0x0c {
2825                n.md.family("$0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A".parse().unwrap());
2826            }
2827        })
2828        .unwrap()
2829        .unwrap_if_sufficient()
2830        .unwrap();
2831
2832        // In the testing netdir, adjacent members are in the same family by default...
2833        let r0 = netdir.by_id(&Ed25519Identity::from([0; 32])).unwrap();
2834        let family: Vec<_> = netdir.known_family_members(&r0).collect();
2835        assert_eq!(family.len(), 1);
2836        assert_eq!(family[0].id(), &Ed25519Identity::from([1; 32]));
2837
2838        // But we've made this relay claim membership with several others.
2839        let r10 = netdir.by_id(&Ed25519Identity::from([10; 32])).unwrap();
2840        let family: HashSet<_> = netdir.known_family_members(&r10).map(|r| *r.id()).collect();
2841        assert_eq!(family.len(), 2);
2842        assert!(family.contains(&Ed25519Identity::from([11; 32])));
2843        assert!(family.contains(&Ed25519Identity::from([12; 32])));
2844        // Note that 13 doesn't get put in, even though it's listed, since it doesn't claim
2845        //  membership with 10.
2846    }
2847    #[test]
2848    #[cfg(feature = "geoip")]
2849    fn relay_has_country_code() {
2850        let src_v6 = r#"
2851        fe80:dead:beef::,fe80:dead:ffff::,US
2852        fe80:feed:eeee::1,fe80:feed:eeee::2,AT
2853        fe80:feed:eeee::2,fe80:feed:ffff::,DE
2854        "#;
2855        let db = GeoipDb::new_from_legacy_format("", src_v6).unwrap();
2856
2857        let netdir = construct_custom_netdir_with_geoip(
2858            |pos, n, _| {
2859                if pos == 0x01 {
2860                    n.rs.add_or_port("[fe80:dead:beef::1]:42".parse().unwrap());
2861                }
2862                if pos == 0x02 {
2863                    n.rs.add_or_port("[fe80:feed:eeee::1]:42".parse().unwrap());
2864                    n.rs.add_or_port("[fe80:feed:eeee::2]:42".parse().unwrap());
2865                }
2866                if pos == 0x03 {
2867                    n.rs.add_or_port("[fe80:dead:beef::1]:42".parse().unwrap());
2868                    n.rs.add_or_port("[fe80:dead:beef::2]:42".parse().unwrap());
2869                }
2870            },
2871            &db,
2872        )
2873        .unwrap()
2874        .unwrap_if_sufficient()
2875        .unwrap();
2876
2877        // No GeoIP data available -> None
2878        let r0 = netdir.by_id(&Ed25519Identity::from([0; 32])).unwrap();
2879        assert_eq!(r0.cc, None);
2880
2881        // Exactly one match -> Some
2882        let r1 = netdir.by_id(&Ed25519Identity::from([1; 32])).unwrap();
2883        assert_eq!(r1.cc.as_ref().map(|x| x.as_ref()), Some("US"));
2884
2885        // Conflicting matches -> None
2886        let r2 = netdir.by_id(&Ed25519Identity::from([2; 32])).unwrap();
2887        assert_eq!(r2.cc, None);
2888
2889        // Multiple agreeing matches -> Some
2890        let r3 = netdir.by_id(&Ed25519Identity::from([3; 32])).unwrap();
2891        assert_eq!(r3.cc.as_ref().map(|x| x.as_ref()), Some("US"));
2892    }
2893
2894    #[test]
2895    #[cfg(feature = "hs-common")]
2896    #[allow(deprecated)]
2897    fn hs_dirs_selection() {
2898        use tor_basic_utils::test_rng::testing_rng;
2899
2900        const HSDIR_SPREAD_STORE: i32 = 6;
2901        const HSDIR_SPREAD_FETCH: i32 = 2;
2902        const PARAMS: [(&str, i32); 2] = [
2903            ("hsdir_spread_store", HSDIR_SPREAD_STORE),
2904            ("hsdir_spread_fetch", HSDIR_SPREAD_FETCH),
2905        ];
2906
2907        let netdir: Arc<NetDir> =
2908            crate::testnet::construct_custom_netdir_with_params(|_, _, _| {}, PARAMS, None)
2909                .unwrap()
2910                .unwrap_if_sufficient()
2911                .unwrap()
2912                .into();
2913        let hsid = dummy_hs_blind_id();
2914
2915        const OP_RELAY_COUNT: &[(HsDirOp, usize)] = &[
2916            // We can't upload to (hsdir_n_replicas * hsdir_spread_store) = 12, relays because there
2917            // are only 10 relays with the HsDir flag in the consensus.
2918            #[cfg(feature = "hs-service")]
2919            (HsDirOp::Upload, 10),
2920            (HsDirOp::Download, 4),
2921        ];
2922
2923        for (op, relay_count) in OP_RELAY_COUNT {
2924            let relays = netdir.hs_dirs(&hsid, *op, &mut testing_rng());
2925
2926            assert_eq!(relays.len(), *relay_count);
2927
2928            // There should be no duplicates (the filtering function passed to
2929            // HsDirRing::ring_items_at() ensures the relays that are already in use for
2930            // lower-numbered replicas aren't considered a second time for a higher-numbered
2931            // replica).
2932            let unique = relays
2933                .iter()
2934                .map(|relay| relay.ed_identity())
2935                .collect::<HashSet<_>>();
2936            assert_eq!(unique.len(), relays.len());
2937        }
2938
2939        // TODO: come up with a test that checks that HsDirRing::ring_items_at() skips over the
2940        // expected relays.
2941        //
2942        // For example, let's say we have the following hsdir ring:
2943        //
2944        //         A  -  B
2945        //        /       \
2946        //       F         C
2947        //        \       /
2948        //         E  -  D
2949        //
2950        // Let's also assume that:
2951        //
2952        //   * hsdir_spread_store = 3
2953        //   * the ordering of the relays on the ring is [A, B, C, D, E, F]
2954        //
2955        // If we use relays [A, B, C] for replica 1, and hs_index(2) = E, then replica 2 _must_ get
2956        // relays [E, F, D]. We should have a test that checks this.
2957    }
2958
2959    #[test]
2960    fn zero_weights() {
2961        // Here we check the behavior of IndexedRandom::{choose_weighted, choose_multiple_weighted}
2962        // in the presence of items whose weight is 0.
2963        //
2964        // We think that the behavior is:
2965        //   - An item with weight 0 is never returned.
2966        //   - If all items have weight 0, choose_weighted returns an error.
2967        //   - If all items have weight 0, choose_multiple_weighted returns an empty list.
2968        //   - If we request n items from choose_multiple_weighted,
2969        //     but only m<n items have nonzero weight, we return all m of those items.
2970        //   - if the request for n items can't be completely satisfied with n items of weight >= 0,
2971        //     we get InsufficientNonZero.
2972        let items = vec![1, 2, 3];
2973        let mut rng = testing_rng();
2974
2975        let a = items.choose_weighted(&mut rng, |_| 0);
2976        assert!(matches!(a, Err(WeightError::InsufficientNonZero)));
2977
2978        let x = items.choose_multiple_weighted(&mut rng, 2, |_| 0);
2979        let xs: Vec<_> = x.unwrap().collect();
2980        assert!(xs.is_empty());
2981
2982        let only_one = |n: &i32| if *n == 1 { 1 } else { 0 };
2983        let x = items.choose_multiple_weighted(&mut rng, 2, only_one);
2984        let xs: Vec<_> = x.unwrap().collect();
2985        assert_eq!(&xs[..], &[&1]);
2986
2987        for _ in 0..100 {
2988            let a = items.choose_weighted(&mut rng, only_one);
2989            assert_eq!(a.unwrap(), &1);
2990
2991            let x = items
2992                .choose_multiple_weighted(&mut rng, 1, only_one)
2993                .unwrap()
2994                .collect::<Vec<_>>();
2995            assert_eq!(x, vec![&1]);
2996        }
2997    }
2998
2999    #[test]
3000    fn insufficient_but_nonzero() {
3001        // Here we check IndexedRandom::choose_multiple_weighted when there no zero values,
3002        // but there are insufficient values.
3003        // (If this behavior changes, we need to change our usage.)
3004
3005        let items = vec![1, 2, 3];
3006        let mut rng = testing_rng();
3007        let mut a = items
3008            .choose_multiple_weighted(&mut rng, 10, |_| 1)
3009            .unwrap()
3010            .copied()
3011            .collect::<Vec<_>>();
3012        a.sort();
3013        assert_eq!(a, items);
3014    }
3015}