tor_llcrypto/pk/rsa.rs
1//! Re-exporting RSA implementations.
2//!
3//! This module can currently handle public keys and signature
4//! verification used in the Tor directory protocol and
5//! similar places.
6//!
7//! Currently, that means validating PKCSv1 signatures, and encoding
8//! and decoding RSA public keys from DER.
9//!
10//! # Limitations:
11//!
12//! Currently missing are support for signing and RSA-OEAP. In Tor,
13//! RSA signing is only needed for relays and authorities, and
14//! RSA-OAEP padding is only needed for the (obsolete) TAP protocol.
15//!
16//! This module should expose RustCrypto trait-based wrappers,
17//! but the [`rsa`] crate didn't support them as of initial writing.
18use rsa::pkcs1::{DecodeRsaPrivateKey, DecodeRsaPublicKey};
19use std::fmt;
20use subtle::{Choice, ConstantTimeEq};
21
22#[cfg(feature = "memquota-memcost")]
23use {derive_deftly::Deftly, tor_memquota::derive_deftly_template_HasMemoryCost};
24
25use crate::util::{ct::CtByteArray, rng::RngCompat};
26
27pub use rsa::Error;
28
29/// How many bytes are in an "RSA ID"? (This is a legacy tor
30/// concept, and refers to identifying a relay by a SHA1 digest
31/// of its RSA public identity key.)
32pub const RSA_ID_LEN: usize = 20;
33
34/// An identifier for an RSA key, based on SHA1 and DER.
35///
36/// These are used (for legacy purposes) all over the Tor protocol.
37///
38/// This object is an "identity" in the sense that it identifies (up to) one RSA
39/// key. It may also represent the identity for a particular entity, such as a
40/// relay or a directory authority.
41///
42/// Note that for modern purposes, you should almost always identify a relay by
43/// its [`Ed25519Identity`](crate::pk::ed25519::Ed25519Identity) instead of by
44/// this kind of identity key.
45#[derive(Clone, Copy, Hash, Ord, PartialOrd, Eq, PartialEq)]
46#[cfg_attr(
47 feature = "memquota-memcost",
48 derive(Deftly),
49 derive_deftly(HasMemoryCost)
50)]
51pub struct RsaIdentity {
52 /// SHA1 digest of a DER encoded public key.
53 id: CtByteArray<RSA_ID_LEN>,
54}
55
56impl ConstantTimeEq for RsaIdentity {
57 fn ct_eq(&self, other: &Self) -> Choice {
58 self.id.ct_eq(&other.id)
59 }
60}
61
62impl fmt::Display for RsaIdentity {
63 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
64 write!(f, "${}", hex::encode(&self.id.as_ref()[..]))
65 }
66}
67impl fmt::Debug for RsaIdentity {
68 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
69 write!(f, "RsaIdentity {{ {} }}", self)
70 }
71}
72
73impl safelog::Redactable for RsaIdentity {
74 /// Warning: This displays 16 bits of the RSA identity, which is
75 /// enough to narrow down a public relay by a great deal.
76 fn display_redacted(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
77 write!(f, "${}…", hex::encode(&self.id.as_ref()[..1]))
78 }
79
80 fn debug_redacted(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
81 write!(f, "RsaIdentity {{ {} }}", self.redacted())
82 }
83}
84
85impl serde::Serialize for RsaIdentity {
86 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
87 where
88 S: serde::Serializer,
89 {
90 if serializer.is_human_readable() {
91 serializer.serialize_str(&hex::encode(&self.id.as_ref()[..]))
92 } else {
93 serializer.serialize_bytes(&self.id.as_ref()[..])
94 }
95 }
96}
97
98impl<'de> serde::Deserialize<'de> for RsaIdentity {
99 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
100 where
101 D: serde::Deserializer<'de>,
102 {
103 if deserializer.is_human_readable() {
104 /// Deserialization helper
105 struct RsaIdentityVisitor;
106 impl<'de> serde::de::Visitor<'de> for RsaIdentityVisitor {
107 type Value = RsaIdentity;
108 fn expecting(&self, fmt: &mut std::fmt::Formatter<'_>) -> fmt::Result {
109 fmt.write_str("hex-encoded RSA identity")
110 }
111 fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
112 where
113 E: serde::de::Error,
114 {
115 RsaIdentity::from_hex(s)
116 .ok_or_else(|| E::custom("wrong encoding for RSA identity"))
117 }
118 }
119
120 deserializer.deserialize_str(RsaIdentityVisitor)
121 } else {
122 /// Deserialization helper
123 struct RsaIdentityVisitor;
124 impl<'de> serde::de::Visitor<'de> for RsaIdentityVisitor {
125 type Value = RsaIdentity;
126 fn expecting(&self, fmt: &mut std::fmt::Formatter<'_>) -> fmt::Result {
127 fmt.write_str("RSA identity")
128 }
129 fn visit_bytes<E>(self, bytes: &[u8]) -> Result<Self::Value, E>
130 where
131 E: serde::de::Error,
132 {
133 RsaIdentity::from_bytes(bytes)
134 .ok_or_else(|| E::custom("wrong length for RSA identity"))
135 }
136 }
137 deserializer.deserialize_bytes(RsaIdentityVisitor)
138 }
139 }
140}
141
142impl RsaIdentity {
143 /// Expose an RsaIdentity as a slice of bytes.
144 pub fn as_bytes(&self) -> &[u8] {
145 &self.id.as_ref()[..]
146 }
147 /// Construct an RsaIdentity from a slice of bytes.
148 ///
149 /// Returns None if the input is not of the correct length.
150 ///
151 /// ```
152 /// use tor_llcrypto::pk::rsa::RsaIdentity;
153 ///
154 /// let bytes = b"xyzzyxyzzyxyzzyxyzzy";
155 /// let id = RsaIdentity::from_bytes(bytes);
156 /// assert_eq!(id.unwrap().as_bytes(), bytes);
157 ///
158 /// let truncated = b"xyzzy";
159 /// let id = RsaIdentity::from_bytes(truncated);
160 /// assert_eq!(id, None);
161 /// ```
162 pub fn from_bytes(bytes: &[u8]) -> Option<Self> {
163 Some(RsaIdentity {
164 id: CtByteArray::from(<[u8; RSA_ID_LEN]>::try_from(bytes).ok()?),
165 })
166 }
167 /// Decode an `RsaIdentity` from a hexadecimal string.
168 ///
169 /// The string must have no spaces, or any extra characters.
170 pub fn from_hex(s: &str) -> Option<Self> {
171 let mut array = [0_u8; 20];
172 match hex::decode_to_slice(s, &mut array) {
173 Err(_) => None,
174 Ok(()) => Some(RsaIdentity::from(array)),
175 }
176 }
177
178 /// Return true if this `RsaIdentity` is composed entirely of zero-valued
179 /// bytes.
180 ///
181 /// Such all-zero values should not be used internally, since they are not
182 /// the ID of any valid key. Instead, they are used in some places in the
183 /// Tor protocols.
184 pub fn is_zero(&self) -> bool {
185 // We do a constant-time comparison to avoid side-channels.
186 self.id.ct_eq(&[0; RSA_ID_LEN].into()).into()
187 }
188}
189
190impl From<[u8; 20]> for RsaIdentity {
191 fn from(id: [u8; 20]) -> RsaIdentity {
192 RsaIdentity { id: id.into() }
193 }
194}
195
196/// An RSA public key.
197///
198/// This implementation is a simple wrapper so that we can define new
199/// methods and traits on the type.
200#[derive(Clone, Debug, Eq, PartialEq)]
201pub struct PublicKey(rsa::RsaPublicKey);
202
203/// An RSA private key.
204///
205/// This is not so useful at present, since Arti currently only has
206/// client support, and Tor clients never actually need RSA private
207/// keys.
208pub struct KeyPair(rsa::RsaPrivateKey);
209
210impl KeyPair {
211 /// Generate a new random RSA keypair.
212 ///
213 /// This is hardcoded to generate a 1024-bit keypair, since this only exists to support the RSA
214 /// keys that we require for backwards compatibility (which are all 1024 bit), and we don't
215 /// anticipate adding anything new that uses RSA in the future.
216 pub fn generate<R: rand_core::RngCore + rand_core::CryptoRng>(
217 csprng: &mut R,
218 ) -> Result<Self, tor_error::Bug> {
219 // It's maybe a bit strange to return tor_error::Bug here, but I think it makes sense: The
220 // only way this call can fail is if we choose invalid values for the size and exponent,
221 // and those values are fixed. Ideally the `rsa` crate would give us a way to check that at
222 // compile time and thus have a infallible call, but they don't. I don't think it's
223 // reasonable to bubble up the underlying rsa::Error type, because I don't expect a caller
224 // to be able to figure out what to do with a error that we expect to never happen.
225 // Returning tor_error::Bug clearly indicates that the caller won't be able to do anything
226 // in particular about this error, without hiding a panic anywhere unexpected.
227 Ok(Self(
228 rsa::RsaPrivateKey::new(&mut RngCompat::new(csprng), 1024).map_err(|_| {
229 tor_error::internal!("Generating RSA key failed, despite fixed exponent and size")
230 })?,
231 ))
232 }
233 /// Return the public component of this key.
234 pub fn to_public_key(&self) -> PublicKey {
235 PublicKey(self.0.to_public_key())
236 }
237 /// Construct a PrivateKey from DER pkcs1 encoding.
238 pub fn from_der(der: &[u8]) -> Option<Self> {
239 Some(KeyPair(rsa::RsaPrivateKey::from_pkcs1_der(der).ok()?))
240 }
241 /// Return a reference to the underlying key type.
242 pub fn as_key(&self) -> &rsa::RsaPrivateKey {
243 &self.0
244 }
245 /// Sign a message using this keypair.
246 ///
247 /// This uses PKCS#1 v1.5 padding and takes a raw bytes, rather than doing the hashing
248 /// internally. This is because we use PKCS padding without specifying the hash OID, which is a
249 /// slightly unusual setup that is understandably not supported by the rsa crate.
250 pub fn sign(&self, message: &[u8]) -> Result<Vec<u8>, rsa::Error> {
251 self.0.sign(rsa::Pkcs1v15Sign::new_unprefixed(), message)
252 }
253}
254impl PublicKey {
255 /// Return true iff the exponent for this key is the same
256 /// number as 'e'.
257 pub fn exponent_is(&self, e: u32) -> bool {
258 use rsa::traits::PublicKeyParts;
259 *self.0.e() == rsa::BigUint::new(vec![e])
260 }
261 /// Return the number of bits in the modulus for this key.
262 pub fn bits(&self) -> usize {
263 use rsa::traits::PublicKeyParts;
264 self.0.n().bits()
265 }
266 /// Try to check a signature (as used in Tor.) The signed hash
267 /// should be in 'hashed', and the alleged signature in 'sig'.
268 ///
269 /// Tor uses RSA-PKCSv1 signatures, with hash algorithm OIDs
270 /// omitted.
271 pub fn verify(&self, hashed: &[u8], sig: &[u8]) -> Result<(), signature::Error> {
272 let padding = rsa::pkcs1v15::Pkcs1v15Sign::new_unprefixed();
273 self.0
274 .verify(padding, hashed, sig)
275 .map_err(|_| signature::Error::new())
276 }
277 /// Decode an alleged DER byte string into a PublicKey.
278 ///
279 /// Return None if the DER string does not have a valid PublicKey.
280 ///
281 /// (This function expects an RsaPublicKey, as used by Tor. It
282 /// does not expect or accept a PublicKeyInfo.)
283 pub fn from_der(der: &[u8]) -> Option<Self> {
284 Some(PublicKey(rsa::RsaPublicKey::from_pkcs1_der(der).ok()?))
285 }
286 /// Encode this public key into the DER format as used by Tor.
287 ///
288 /// The result is an RsaPublicKey, not a PublicKeyInfo.
289 pub fn to_der(&self) -> Vec<u8> {
290 use der_parser::ber::BerObject;
291 use rsa::traits::PublicKeyParts;
292
293 let mut n = self.0.n().to_bytes_be();
294 // prepend 0 if high bit is 1 to ensure correct signed encoding
295 if n[0] & 0b10000000 != 0 {
296 n.insert(0, 0_u8);
297 }
298 let n = BerObject::from_int_slice(&n);
299
300 let mut e = self.0.e().to_bytes_be();
301 // prepend 0 if high bit is 1 to ensure correct signed encoding
302 if e[0] & 0b10000000 != 0 {
303 e.insert(0, 0_u8);
304 }
305 let e = BerObject::from_int_slice(&e);
306
307 let asn1 = BerObject::from_seq(vec![n, e]);
308 asn1.to_vec().expect("RSA key not encodable as DER")
309 }
310
311 /// Compute the RsaIdentity for this public key.
312 pub fn to_rsa_identity(&self) -> RsaIdentity {
313 use crate::d::Sha1;
314 use digest::Digest;
315 let id: [u8; RSA_ID_LEN] = Sha1::digest(self.to_der()).into();
316 RsaIdentity { id: id.into() }
317 }
318
319 /// Return a reference to the underlying key type.
320 pub fn as_key(&self) -> &rsa::RsaPublicKey {
321 &self.0
322 }
323}
324
325impl<'a> From<&'a KeyPair> for PublicKey {
326 fn from(value: &'a KeyPair) -> Self {
327 PublicKey(value.to_public_key().0)
328 }
329}
330
331impl From<rsa::RsaPrivateKey> for KeyPair {
332 fn from(value: rsa::RsaPrivateKey) -> Self {
333 Self(value)
334 }
335}
336
337impl From<rsa::RsaPublicKey> for PublicKey {
338 fn from(value: rsa::RsaPublicKey) -> Self {
339 Self(value)
340 }
341}
342
343/// An RSA signature plus all the information needed to validate it.
344pub struct ValidatableRsaSignature {
345 /// The key that allegedly signed this signature
346 key: PublicKey,
347 /// The signature in question
348 sig: Vec<u8>,
349 /// The value we expect to find that the signature is a signature of.
350 expected_hash: Vec<u8>,
351}
352
353impl ValidatableRsaSignature {
354 /// Construct a new ValidatableRsaSignature.
355 pub fn new(key: &PublicKey, sig: &[u8], expected_hash: &[u8]) -> Self {
356 ValidatableRsaSignature {
357 key: key.clone(),
358 sig: sig.into(),
359 expected_hash: expected_hash.into(),
360 }
361 }
362}
363
364impl super::ValidatableSignature for ValidatableRsaSignature {
365 fn is_valid(&self) -> bool {
366 self.key
367 .verify(&self.expected_hash[..], &self.sig[..])
368 .is_ok()
369 }
370}