1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
//! Declare traits to be implemented by types that describe a place
//! that Tor can connect to, directly or indirectly.
use safelog::Redactable;
use std::{fmt, iter::FusedIterator, net::SocketAddr};
use strum::IntoEnumIterator;
use tor_llcrypto::pk;
use crate::{ChannelMethod, RelayIdRef, RelayIdType, RelayIdTypeIter};
#[cfg(feature = "pt-client")]
use crate::PtTargetAddr;
/// Legacy implementation helper for HasRelayIds.
///
/// Previously, we assumed that everything had these two identity types, which
/// is not an assumption we want to keep making in the future.
pub trait HasRelayIdsLegacy {
/// Return the ed25519 identity for this relay.
fn ed_identity(&self) -> &pk::ed25519::Ed25519Identity;
/// Return the RSA identity for this relay.
fn rsa_identity(&self) -> &pk::rsa::RsaIdentity;
}
/// An object containing information about a relay's identity keys.
///
/// This trait has a fairly large number of methods, most of which you're not
/// actually expected to implement. The only one that you need to provide is
/// [`identity`](HasRelayIds::identity).
pub trait HasRelayIds {
/// Return the identity of this relay whose type is `key_type`, or None if
/// the relay has no such identity.
///
/// (Currently all relays have all recognized identity types, but we might
/// implement or deprecate an identity type in the future.)
fn identity(&self, key_type: RelayIdType) -> Option<RelayIdRef<'_>>;
/// Return an iterator over all of the identities held by this object.
fn identities(&self) -> RelayIdIter<'_, Self> {
RelayIdIter {
info: self,
next_key: RelayIdType::all_types(),
}
}
/// Return the ed25519 identity for this relay if it has one.
fn ed_identity(&self) -> Option<&pk::ed25519::Ed25519Identity> {
self.identity(RelayIdType::Ed25519)
.map(RelayIdRef::unwrap_ed25519)
}
/// Return the RSA identity for this relay if it has one.
fn rsa_identity(&self) -> Option<&pk::rsa::RsaIdentity> {
self.identity(RelayIdType::Rsa).map(RelayIdRef::unwrap_rsa)
}
/// Check whether the provided Id is a known identity of this relay.
///
/// Remember that a given set of identity keys may be incomplete: some
/// objects that represent a relay have only a subset of the relay's
/// identities. Therefore, a "true" answer means that the relay has this
/// identity, but a "false" answer could mean that the relay has a
/// different identity of this type, or that it has _no_ known identity of
/// this type.
fn has_identity(&self, id: RelayIdRef<'_>) -> bool {
self.identity(id.id_type()).map(|my_id| my_id == id) == Some(true)
}
/// Return true if this object has any known identity.
fn has_any_identity(&self) -> bool {
RelayIdType::iter().any(|id_type| self.identity(id_type).is_some())
}
/// Return true if this object has exactly the same relay IDs as `other`.
//
// TODO: Once we make it so particular identity key types are optional, we
// should add a note saying that this function is usually not what you want
// for many cases, since you might want to know "could this be the same
// relay" vs "is this definitely the same relay."
//
// NOTE: We don't make this an `Eq` method, since we want to make callers
// choose carefully among this method, `has_all_relay_ids_from`, and any
// similar methods we add in the future.
fn same_relay_ids<T: HasRelayIds + ?Sized>(&self, other: &T) -> bool {
RelayIdType::all_types().all(|key_type| self.identity(key_type) == other.identity(key_type))
}
/// Return true if this object has every relay ID that `other` does.
///
/// (It still returns true if there are some IDs in this object that are not
/// present in `other`.)
fn has_all_relay_ids_from<T: HasRelayIds + ?Sized>(&self, other: &T) -> bool {
RelayIdType::all_types().all(|key_type| {
match (self.identity(key_type), other.identity(key_type)) {
// If we both have the same key for this type, great.
(Some(mine), Some(theirs)) if mine == theirs => true,
// Uh oh. They do have a key for his type, but it's not ours.
(_, Some(_theirs)) => false,
// If they don't care what we have for this type, great.
(_, None) => true,
}
})
}
/// Compare this object to another HasRelayIds.
///
/// Objects are sorted by Ed25519 identities, with ties decided by RSA
/// identities. An absent identity of a given type is sorted before a
/// present identity of that type.
///
/// If additional identities are added in the future, they may taken into
/// consideration before _or_ after the current identity types.
fn cmp_by_relay_ids<T: HasRelayIds + ?Sized>(&self, other: &T) -> std::cmp::Ordering {
for key_type in RelayIdType::iter() {
let ordering = Ord::cmp(&self.identity(key_type), &other.identity(key_type));
if ordering.is_ne() {
return ordering;
}
}
std::cmp::Ordering::Equal
}
}
impl<T: HasRelayIdsLegacy> HasRelayIds for T {
fn identity(&self, key_type: RelayIdType) -> Option<RelayIdRef<'_>> {
match key_type {
RelayIdType::Rsa => Some(self.rsa_identity().into()),
RelayIdType::Ed25519 => Some(self.ed_identity().into()),
}
}
}
/// An iterator over all of the relay identities held by a [`HasRelayIds`]
#[derive(Clone)]
pub struct RelayIdIter<'a, T: HasRelayIds + ?Sized> {
/// The object holding the keys
info: &'a T,
/// The next key type to yield
next_key: RelayIdTypeIter,
}
impl<'a, T: HasRelayIds + ?Sized> Iterator for RelayIdIter<'a, T> {
type Item = RelayIdRef<'a>;
fn next(&mut self) -> Option<Self::Item> {
for key_type in &mut self.next_key {
if let Some(key) = self.info.identity(key_type) {
return Some(key);
}
}
None
}
}
// RelayIdIter is fused since next_key is fused.
impl<'a, T: HasRelayIds + ?Sized> FusedIterator for RelayIdIter<'a, T> {}
/// An object that represents a host on the network which may have known IP addresses.
pub trait HasAddrs {
/// Return the addresses listed for this server.
///
/// NOTE that these addresses are not necessarily ones that we should
/// connect to directly! They can be useful for telling where a server is
/// located, or whether it is "close" to another server, but without knowing
/// the associated protocols you cannot use these to launch a connection.
///
/// Also, for some servers, we may not actually have any relevant addresses;
/// in that case, the returned slice is empty.
///
/// To see how to _connect_ to a relay, use [`HasChanMethod::chan_method`]
//
// TODO: This is a questionable API. I'd rather return an iterator
// of addresses or references to addresses, but both of those options
// make defining the right associated types rather tricky.
fn addrs(&self) -> &[SocketAddr];
}
/// An object that can be connected to via [`ChannelMethod`]s.
pub trait HasChanMethod {
/// Return the known ways to contact this
// TODO: See notes on HasAddrs above.
// TODO: I don't like having this return a new ChannelMethod, but I
// don't see a great alternative. Let's revisit that.-nickm.
fn chan_method(&self) -> ChannelMethod;
}
/// Implement `HasChanMethods` for an object with `HasAddr` whose addresses
/// _all_ represent a host we can connect to by a direct Tor connection at its
/// IP addresses.
pub trait DirectChanMethodsHelper: HasAddrs {}
impl<D: DirectChanMethodsHelper> HasChanMethod for D {
fn chan_method(&self) -> ChannelMethod {
ChannelMethod::Direct(self.addrs().to_vec())
}
}
/// Information about a Tor relay used to connect to it.
///
/// Anything that implements 'ChanTarget' can be used as the
/// identity of a relay for the purposes of launching a new
/// channel.
pub trait ChanTarget: HasRelayIds + HasAddrs + HasChanMethod {
/// Return a reference to this object suitable for formatting its
/// [`ChanTarget`]-specific members.
///
/// The display format is not exhaustive, but tries to give enough
/// information to identify which channel target we're talking about.
fn display_chan_target(&self) -> DisplayChanTarget<'_, Self>
where
Self: Sized,
{
DisplayChanTarget { inner: self }
}
}
/// Information about a Tor relay used to extend a circuit to it.
///
/// Anything that implements 'CircTarget' can be used as the
/// identity of a relay for the purposes of extending a circuit.
pub trait CircTarget: ChanTarget {
/// Return a new vector of link specifiers for this relay.
// TODO: This is a questionable API. I'd rather return an iterator
// of link specifiers, but that's not so easy to do, since it seems
// doing so correctly would require default associated types.
fn linkspecs(&self) -> Vec<crate::LinkSpec> {
let mut result: Vec<_> = self.identities().map(|id| id.to_owned().into()).collect();
#[allow(irrefutable_let_patterns)]
if let ChannelMethod::Direct(addrs) = self.chan_method() {
result.extend(addrs.into_iter().map(crate::LinkSpec::from));
}
result
}
/// Return the ntor onion key for this relay
fn ntor_onion_key(&self) -> &pk::curve25519::PublicKey;
/// Return the subprotocols implemented by this relay.
fn protovers(&self) -> &tor_protover::Protocols;
}
/// A reference to a ChanTarget that implements Display using a hopefully useful
/// format.
#[derive(Debug, Clone)]
pub struct DisplayChanTarget<'a, T> {
/// The ChanTarget that we're formatting.
inner: &'a T,
}
impl<'a, T: ChanTarget> DisplayChanTarget<'a, T> {
/// helper: output `self` in a possibly redacted way.
fn fmt_impl(&self, f: &mut fmt::Formatter<'_>, redact: bool) -> fmt::Result {
write!(f, "[")?;
// We look at the chan_method() (where we would connect to) rather than
// the addrs() (where the relay is, nebulously, "located"). This lets us
// give a less surprising description.
match self.inner.chan_method() {
ChannelMethod::Direct(v) if v.is_empty() => write!(f, "?")?,
ChannelMethod::Direct(v) if v.len() == 1 => {
write!(f, "{}", v[0].maybe_redacted(redact))?;
}
ChannelMethod::Direct(v) => write!(f, "{}+", v[0].maybe_redacted(redact))?,
#[cfg(feature = "pt-client")]
ChannelMethod::Pluggable(target) => {
match target.addr() {
PtTargetAddr::None => {}
other => write!(f, "{} ", other.maybe_redacted(redact))?,
}
write!(f, "via {}", target.transport())?;
// This deliberately doesn't include the PtTargetSettings, since
// they can be large, and they're typically unnecessary.
}
}
for ident in self.inner.identities() {
write!(f, " {}", ident.maybe_redacted(redact))?;
if redact {
break;
}
}
write!(f, "]")
}
}
impl<'a, T: ChanTarget> fmt::Display for DisplayChanTarget<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.fmt_impl(f, false)
}
}
impl<'a, T: ChanTarget + std::fmt::Debug> safelog::Redactable for DisplayChanTarget<'a, T> {
fn display_redacted(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.fmt_impl(f, true)
}
fn debug_redacted(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "ChanTarget({:?})", self.redacted().to_string())
}
}
#[cfg(test)]
mod test {
// @@ begin test lint list maintained by maint/add_warning @@
#![allow(clippy::bool_assert_comparison)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::dbg_macro)]
#![allow(clippy::print_stderr)]
#![allow(clippy::print_stdout)]
#![allow(clippy::single_char_pattern)]
#![allow(clippy::unwrap_used)]
#![allow(clippy::unchecked_duration_subtraction)]
//! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
use super::*;
use hex_literal::hex;
use std::net::IpAddr;
use tor_llcrypto::pk::{self, ed25519::Ed25519Identity, rsa::RsaIdentity};
struct Example {
addrs: Vec<SocketAddr>,
ed_id: pk::ed25519::Ed25519Identity,
rsa_id: pk::rsa::RsaIdentity,
ntor: pk::curve25519::PublicKey,
pv: tor_protover::Protocols,
}
impl HasAddrs for Example {
fn addrs(&self) -> &[SocketAddr] {
&self.addrs[..]
}
}
impl DirectChanMethodsHelper for Example {}
impl HasRelayIdsLegacy for Example {
fn ed_identity(&self) -> &pk::ed25519::Ed25519Identity {
&self.ed_id
}
fn rsa_identity(&self) -> &pk::rsa::RsaIdentity {
&self.rsa_id
}
}
impl ChanTarget for Example {}
impl CircTarget for Example {
fn ntor_onion_key(&self) -> &pk::curve25519::PublicKey {
&self.ntor
}
fn protovers(&self) -> &tor_protover::Protocols {
&self.pv
}
}
/// Return an `Example` object, for use in tests below.
fn example() -> Example {
Example {
addrs: vec![
"127.0.0.1:99".parse::<SocketAddr>().unwrap(),
"[::1]:909".parse::<SocketAddr>().unwrap(),
],
ed_id: pk::ed25519::PublicKey::from_bytes(&hex!(
"fc51cd8e6218a1a38da47ed00230f058
0816ed13ba3303ac5deb911548908025"
))
.unwrap()
.into(),
rsa_id: pk::rsa::RsaIdentity::from_bytes(&hex!(
"1234567890abcdef12341234567890abcdef1234"
))
.unwrap(),
ntor: pk::curve25519::PublicKey::from(hex!(
"e6db6867583030db3594c1a424b15f7c
726624ec26b3353b10a903a6d0ab1c4c"
)),
pv: tor_protover::Protocols::default(),
}
}
#[test]
fn test_linkspecs() {
let ex = example();
let specs = ex.linkspecs();
assert_eq!(4, specs.len());
use crate::ls::LinkSpec;
assert_eq!(
specs[0],
LinkSpec::Ed25519Id(
pk::ed25519::PublicKey::from_bytes(&hex!(
"fc51cd8e6218a1a38da47ed00230f058
0816ed13ba3303ac5deb911548908025"
))
.unwrap()
.into()
)
);
assert_eq!(
specs[1],
LinkSpec::RsaId(
pk::rsa::RsaIdentity::from_bytes(&hex!("1234567890abcdef12341234567890abcdef1234"))
.unwrap()
)
);
assert_eq!(
specs[2],
LinkSpec::OrPort("127.0.0.1".parse::<IpAddr>().unwrap(), 99)
);
assert_eq!(
specs[3],
LinkSpec::OrPort("::1".parse::<IpAddr>().unwrap(), 909)
);
}
#[test]
fn cmp_by_ids() {
use crate::RelayIds;
use std::cmp::Ordering;
fn b(ed: Option<Ed25519Identity>, rsa: Option<RsaIdentity>) -> RelayIds {
let mut b = RelayIds::builder();
if let Some(ed) = ed {
b.ed_identity(ed);
}
if let Some(rsa) = rsa {
b.rsa_identity(rsa);
}
b.build().unwrap()
}
// Assert that v is strictly ascending.
fn assert_sorted(v: &[RelayIds]) {
for slice in v.windows(2) {
assert_eq!(slice[0].cmp_by_relay_ids(&slice[1]), Ordering::Less);
assert_eq!(slice[1].cmp_by_relay_ids(&slice[0]), Ordering::Greater);
assert_eq!(slice[0].cmp_by_relay_ids(&slice[0]), Ordering::Equal);
}
}
let ed1 = hex!("0a54686973206973207468652043656e7472616c205363727574696e697a6572").into();
let ed2 = hex!("6962696c69747920746f20656e666f72636520616c6c20746865206c6177730a").into();
let ed3 = hex!("73736564207965740a497420697320616c736f206d7920726573706f6e736962").into();
let rsa1 = hex!("2e2e2e0a4974206973206d7920726573706f6e73").into();
let rsa2 = hex!("5468617420686176656e2774206265656e207061").into();
let rsa3 = hex!("696c69747920746f20616c65727420656163680a").into();
assert_sorted(&[
b(Some(ed1), None),
b(Some(ed2), None),
b(Some(ed3), None),
b(Some(ed3), Some(rsa1)),
]);
assert_sorted(&[
b(Some(ed1), Some(rsa3)),
b(Some(ed2), Some(rsa2)),
b(Some(ed3), Some(rsa1)),
b(Some(ed3), Some(rsa2)),
]);
assert_sorted(&[
b(Some(ed1), Some(rsa1)),
b(Some(ed1), Some(rsa2)),
b(Some(ed1), Some(rsa3)),
]);
assert_sorted(&[
b(None, Some(rsa1)),
b(None, Some(rsa2)),
b(None, Some(rsa3)),
]);
assert_sorted(&[
b(None, Some(rsa1)),
b(Some(ed1), None),
b(Some(ed1), Some(rsa1)),
]);
}
#[test]
fn display() {
let e1 = example();
assert_eq!(
e1.display_chan_target().to_string(),
"[127.0.0.1:99+ ed25519:/FHNjmIYoaONpH7QAjDwWAgW7RO6MwOsXeuRFUiQgCU \
$1234567890abcdef12341234567890abcdef1234]"
);
#[cfg(feature = "pt-client")]
{
use crate::PtTarget;
let rsa = hex!("234461644a6f6b6523436f726e794f6e4d61696e").into();
let mut b = crate::OwnedChanTarget::builder();
b.ids().rsa_identity(rsa);
let e2 = b
.method(ChannelMethod::Pluggable(PtTarget::new(
"obfs4".parse().unwrap(),
"127.0.0.1:99".parse().unwrap(),
)))
.build()
.unwrap();
assert_eq!(
e2.to_string(),
"[127.0.0.1:99 via obfs4 $234461644a6f6b6523436f726e794f6e4d61696e]"
);
}
}
#[test]
fn has_id() {
use crate::RelayIds;
assert!(example().has_any_identity());
assert!(!RelayIds::empty().has_any_identity());
}
}