1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
//! Main implementation of the connection functionality
use std::time::Duration;
use std::collections::HashMap;
use std::fmt::Debug;
use std::marker::PhantomData;
use std::sync::Arc;
use std::time::Instant;
use async_trait::async_trait;
use educe::Educe;
use futures::{AsyncRead, AsyncWrite};
use itertools::Itertools;
use rand::Rng;
use tor_bytes::Writeable;
use tor_cell::relaycell::hs::intro_payload::{self, IntroduceHandshakePayload};
use tor_cell::relaycell::msg::{AnyRelayMsg, Introduce1, Rendezvous2};
use tor_error::{debug_report, warn_report, Bug};
use tor_hscrypto::Subcredential;
use tor_proto::circuit::handshake::hs_ntor;
use tracing::{debug, trace};
use retry_error::RetryError;
use safelog::Sensitive;
use tor_cell::relaycell::hs::{
AuthKeyType, EstablishRendezvous, IntroduceAck, RendezvousEstablished,
};
use tor_cell::relaycell::RelayMsg;
use tor_checkable::{timed::TimerangeBound, Timebound};
use tor_circmgr::build::circparameters_from_netparameters;
use tor_circmgr::hspool::{HsCircKind, HsCircPool};
use tor_circmgr::timeouts::Action as TimeoutsAction;
use tor_dirclient::request::Requestable as _;
use tor_error::{internal, into_internal};
use tor_error::{HasRetryTime as _, RetryTime};
use tor_hscrypto::pk::{HsBlindId, HsId, HsIdKey};
use tor_hscrypto::RendCookie;
use tor_linkspec::{CircTarget, HasRelayIds, OwnedCircTarget, RelayId};
use tor_llcrypto::pk::ed25519::Ed25519Identity;
use tor_netdir::{NetDir, Relay};
use tor_netdoc::doc::hsdesc::{HsDesc, IntroPointDesc};
use tor_proto::circuit::{
CircParameters, ClientCirc, ConversationInHandler, MetaCellDisposition, MsgHandler,
};
use tor_rtcompat::{Runtime, SleepProviderExt as _, TimeoutError};
use crate::proto_oneshot;
use crate::relay_info::ipt_to_circtarget;
use crate::state::MockableConnectorData;
use crate::Config;
use crate::{rend_pt_identity_for_error, FailedAttemptError, IntroPtIndex, RendPtIdentityForError};
use crate::{ConnError, DescriptorError, DescriptorErrorDetail};
use crate::{HsClientConnector, HsClientSecretKeys};
use ConnError as CE;
use FailedAttemptError as FAE;
/// Number of hops in our hsdir, introduction, and rendezvous circuits
///
/// Required by `tor_circmgr`'s timeout estimation API
/// ([`tor_circmgr::CircMgr::estimate_timeout`], [`HsCircPool::estimate_timeout`]).
///
/// TODO HS hardcoding the number of hops to 3 seems wrong.
/// This is really something that HsCircPool knows. And some setups might want to make
/// shorter circuits for some reason. And it will become wrong with vanguards?
/// But right now I think this is what HsCircPool does.
//
// Some commentary from
// https://gitlab.torproject.org/tpo/core/arti/-/merge_requests/1342#note_2918050
// Possibilities:
// * Look at n_hops() on the circuits we get, if we don't need this estimate
// till after we have the circuit.
// * Add a function to HsCircPool to tell us what length of circuit to expect
// for each given type of circuit.
const HOPS: usize = 3;
/// Given `R, M` where `M: MocksForConnect<M>`, expand to the mockable `ClientCirc`
// This is quite annoying. But the alternative is to write out `<... as // ...>`
// each time, since otherwise the compile complains about ambiguous associated types.
macro_rules! ClientCirc { { $R:ty, $M:ty } => {
<<$M as MocksForConnect<$R>>::HsCircPool as MockableCircPool<$R>>::ClientCirc
} }
/// Information about a hidden service, including our connection history
#[derive(Default, Educe)]
#[educe(Debug)]
// This type is actually crate-private, since it isn't re-exported, but it must
// be `pub` because it appears as a default for a type parameter in HsClientConnector.
pub struct Data {
/// The latest known onion service descriptor for this service.
desc: DataHsDesc,
/// Information about the latest status of trying to connect to this service
/// through each of its introduction points.
ipts: DataIpts,
}
/// Part of `Data` that relates to the HS descriptor
type DataHsDesc = Option<TimerangeBound<HsDesc>>;
/// Part of `Data` that relates to our information about introduction points
type DataIpts = HashMap<RelayIdForExperience, IptExperience>;
/// How things went last time we tried to use this introduction point
///
/// Neither this data structure, nor [`Data`], is responsible for arranging that we expire this
/// information eventually. If we keep reconnecting to the service, we'll retain information
/// about each IPT indefinitely, at least so long as they remain listed in the descriptors we
/// receive.
///
/// Expiry of unused data is handled by `state.rs`, according to `last_used` in `ServiceState`.
///
/// Choosing which IPT to prefer is done by obtaining an `IptSortKey`
/// (from this and other information).
//
// Don't impl Ord for IptExperience. We obtain `Option<&IptExperience>` from our
// data structure, and if IptExperience were Ord then Option<&IptExperience> would be Ord
// but it would be the wrong sort order: it would always prefer None, ie untried IPTs.
#[derive(Debug)]
struct IptExperience {
/// How long it took us to get whatever outcome occurred
///
/// We prefer fast successes to slow ones.
/// Then, we prefer failures with earlier `RetryTime`,
/// and, lastly, faster failures to slower ones.
duration: Duration,
/// What happened and when we might try again
///
/// Note that we don't actually *enforce* the `RetryTime` here, just sort by it
/// using `RetryTime::loose_cmp`.
///
/// We *do* return an error that is itself `HasRetryTime` and expect our callers
/// to honour that.
outcome: Result<(), RetryTime>,
}
/// Actually make a HS connection, updating our recorded state as necessary
///
/// `connector` is provided only for obtaining the runtime and netdir (and `mock_for_state`).
/// Obviously, `connect` is not supposed to go looking in `services`.
///
/// This function handles all necessary retrying of fallible operations,
/// (and, therefore, must also limit the total work done for a particular call).
///
/// This function has a minimum of functionality, since it is the boundary
/// between "mock connection, used for testing `state.rs`" and
/// "mock circuit and netdir, used for testing `connect.rs`",
/// so it is not, itself, unit-testable.
pub(crate) async fn connect<R: Runtime>(
connector: &HsClientConnector<R>,
netdir: Arc<NetDir>,
config: Arc<Config>,
hsid: HsId,
data: &mut Data,
secret_keys: HsClientSecretKeys,
) -> Result<Arc<ClientCirc>, ConnError> {
Context::new(
&connector.runtime,
&*connector.circpool,
netdir,
config,
hsid,
secret_keys,
(),
)?
.connect(data)
.await
}
/// Common context for a single request to connect to a hidden service
///
/// This saves on passing this same set of (immutable) values (or subsets thereof)
/// to each method in the principal functional code, everywhere.
/// It also provides a convenient type to be `Self`.
///
/// Its lifetime is one request to make a new client circuit to a hidden service,
/// including all the retries and timeouts.
struct Context<'c, R: Runtime, M: MocksForConnect<R>> {
/// Runtime
runtime: &'c R,
/// Circpool
circpool: &'c M::HsCircPool,
/// Netdir
//
// TODO holding onto the netdir for the duration of our attempts is not ideal
// but doing better is fairly complicated. See discussions here:
// https://gitlab.torproject.org/tpo/core/arti/-/merge_requests/1228#note_2910545
// https://gitlab.torproject.org/tpo/core/arti/-/issues/884
netdir: Arc<NetDir>,
/// Configuration
config: Arc<Config>,
/// Secret keys to use
secret_keys: HsClientSecretKeys,
/// HS ID
hsid: HsId,
/// Blinded HS ID
hs_blind_id: HsBlindId,
/// The subcredential to use during this time period
subcredential: Subcredential,
/// Mock data
mocks: M,
}
/// Details of an established rendezvous point
///
/// Intermediate value for progress during a connection attempt.
struct Rendezvous<'r, R: Runtime, M: MocksForConnect<R>> {
/// RPT as a `Relay`
rend_relay: Relay<'r>,
/// Rendezvous circuit
rend_circ: Arc<ClientCirc!(R, M)>,
/// Rendezvous cookie
rend_cookie: RendCookie,
/// Receiver that will give us the RENDEZVOUS2 message.
///
/// The sending ended is owned by the handler
/// which receives control messages on the rendezvous circuit,
/// and which was installed when we sent `ESTABLISH_RENDEZVOUS`.
///
/// (`RENDEZVOUS2` is the message containing the onion service's side of the handshake.)
rend2_rx: proto_oneshot::Receiver<Rendezvous2>,
/// Dummy, to placate compiler
///
/// Covariant without dropck or interfering with Send/Sync will do fine.
marker: PhantomData<fn() -> (R, M)>,
}
/// Random value used as part of IPT selection
type IptSortRand = u32;
/// Details of an apparently-useable introduction point
///
/// Intermediate value for progress during a connection attempt.
struct UsableIntroPt<'i> {
/// Index in HS descriptor
intro_index: IntroPtIndex,
/// IPT descriptor
intro_desc: &'i IntroPointDesc,
/// IPT `CircTarget`
intro_target: OwnedCircTarget,
/// Random value used as part of IPT selection
sort_rand: IptSortRand,
}
/// Lookup key for looking up and recording our IPT use experiences
///
/// Used to identify a relay when looking to see what happened last time we used it,
/// and storing that information after we tried it.
///
/// We store the experience information under an arbitrary one of the relay's identities,
/// as returned by the `HasRelayIds::identities().next()`.
/// When we do lookups, we check all the relay's identities to see if we find
/// anything relevant.
/// If relay identities permute in strange ways, whether we find our previous
/// knowledge about them is not particularly well defined, but that's fine.
///
/// While this is, structurally, a relay identity, it is not suitable for other purposes.
#[derive(Hash, Eq, PartialEq, Ord, PartialOrd, Debug)]
struct RelayIdForExperience(RelayId);
/// Details of an apparently-successful INTRODUCE exchange
///
/// Intermediate value for progress during a connection attempt.
struct Introduced<R: Runtime, M: MocksForConnect<R>> {
/// End-to-end crypto NTORv3 handshake with the service
///
/// Created as part of generating our `INTRODUCE1`,
/// and then used when processing `RENDEZVOUS2`.
handshake_state: hs_ntor::HsNtorClientState,
/// Dummy, to placate compiler
///
/// `R` and `M` only used for getting to mocks.
/// Covariant without dropck or interfering with Send/Sync will do fine.
marker: PhantomData<fn() -> (R, M)>,
}
impl RelayIdForExperience {
/// Identities to use to try to find previous experience information about this IPT
fn for_lookup(intro_target: &OwnedCircTarget) -> impl Iterator<Item = Self> + '_ {
intro_target
.identities()
.map(|id| RelayIdForExperience(id.to_owned()))
}
/// Identity to use to store previous experience information about this IPT
fn for_store(intro_target: &OwnedCircTarget) -> Result<Self, Bug> {
let id = intro_target
.identities()
.next()
.ok_or_else(|| internal!("introduction point relay with no identities"))?
.to_owned();
Ok(RelayIdForExperience(id))
}
}
/// Sort key for an introduction point, for selecting the best IPTs to try first
///
/// Ordering is most preferable first.
///
/// We use this to sort our `UsableIpt`s using `.sort_by_key`.
/// (This implementation approach ensures that we obey all the usual ordering invariants.)
#[derive(Ord, PartialOrd, Eq, PartialEq, Debug)]
struct IptSortKey {
/// Sort by how preferable the experience was
outcome: IptSortKeyOutcome,
/// Failing that, choose randomly
sort_rand: IptSortRand,
}
/// Component of the [`IptSortKey`] representing outcome of our last attempt, if any
///
/// This is the main thing we use to decide which IPTs to try first.
/// It is calculated for each IPT
/// (via `.sort_by_key`, so repeatedly - it should therefore be cheap to make.)
///
/// Ordering is most preferable first.
#[derive(Ord, PartialOrd, Eq, PartialEq, Debug)]
enum IptSortKeyOutcome {
/// Prefer successes
Success {
/// Prefer quick ones
duration: Duration,
},
/// Failing that, try one we don't know to have failed
Untried,
/// Failing that, it'll have to be ones that didn't work last time
Failed {
/// Prefer failures with an earlier retry time
retry_time: tor_error::LooseCmpRetryTime,
/// Failing that, prefer quick failures (rather than slow ones eg timeouts)
duration: Duration,
},
}
impl From<Option<&IptExperience>> for IptSortKeyOutcome {
fn from(experience: Option<&IptExperience>) -> IptSortKeyOutcome {
use IptSortKeyOutcome as O;
match experience {
None => O::Untried,
Some(IptExperience { duration, outcome }) => match outcome {
Ok(()) => O::Success {
duration: *duration,
},
Err(retry_time) => O::Failed {
retry_time: (*retry_time).into(),
duration: *duration,
},
},
}
}
}
impl<'c, R: Runtime, M: MocksForConnect<R>> Context<'c, R, M> {
/// Make a new `Context` from the input data
fn new(
runtime: &'c R,
circpool: &'c M::HsCircPool,
netdir: Arc<NetDir>,
config: Arc<Config>,
hsid: HsId,
secret_keys: HsClientSecretKeys,
mocks: M,
) -> Result<Self, ConnError> {
let time_period = netdir.hs_time_period();
let (hs_blind_id_key, subcredential) = HsIdKey::try_from(hsid)
.map_err(|_| CE::InvalidHsId)?
.compute_blinded_key(time_period)
.map_err(
// TODO HS what on earth do these errors mean, in practical terms ?
// In particular, we'll want to convert them to a ConnError variant,
// but what ErrorKind should they have ?
into_internal!("key blinding error, don't know how to handle"),
)?;
let hs_blind_id = hs_blind_id_key.id();
Ok(Context {
netdir,
config,
hsid,
hs_blind_id,
subcredential,
circpool,
runtime,
secret_keys,
mocks,
})
}
/// Actually make a HS connection, updating our recorded state as necessary
///
/// Called by the `connect` function in this module.
///
/// This function handles all necessary retrying of fallible operations,
/// (and, therefore, must also limit the total work done for a particular call).
async fn connect(&self, data: &mut Data) -> Result<Arc<ClientCirc!(R, M)>, ConnError> {
// This function must do the following, retrying as appropriate.
// - Look up the onion descriptor in the state.
// - Download the onion descriptor if one isn't there.
// - In parallel:
// - Pick a rendezvous point from the netdirprovider and launch a
// rendezvous circuit to it. Then send ESTABLISH_INTRO.
// - Pick a number of introduction points (1 or more) and try to
// launch circuits to them.
// - On a circuit to an introduction point, send an INTRODUCE1 cell.
// - Wait for a RENDEZVOUS2 cell on the rendezvous circuit
// - Add a virtual hop to the rendezvous circuit.
// - Return the rendezvous circuit.
let mocks = self.mocks.clone();
let desc = self.descriptor_ensure(&mut data.desc).await?;
mocks.test_got_desc(desc);
let circ = self.intro_rend_connect(desc, &mut data.ipts).await?;
mocks.test_got_circ(&circ);
Ok(circ)
}
/// Ensure that `Data.desc` contains the HS descriptor
///
/// If we have a previously-downloaded descriptor, which is still valid,
/// just returns a reference to it.
///
/// Otherwise, tries to obtain the descriptor by downloading it from hsdir(s).
///
/// Does all necessary retries and timeouts.
/// Returns an error if no valid descriptor could be found.
async fn descriptor_ensure<'d>(&self, data: &'d mut DataHsDesc) -> Result<&'d HsDesc, CE> {
// Maximum number of hsdir connection and retrieval attempts we'll make
let max_total_attempts = self
.config
.retry
.hs_desc_fetch_attempts()
.try_into()
// User specified a very large u32. We must be downcasting it to 16bit!
// let's give them as many retries as we can manage.
.unwrap_or(usize::MAX);
// Limit on the duration of each retrieval attempt
let each_timeout = self.estimate_timeout(&[
(1, TimeoutsAction::BuildCircuit { length: HOPS }), // build circuit
(1, TimeoutsAction::RoundTrip { length: HOPS }), // One HTTP query/response
]);
// We retain a previously obtained descriptor precisely until its lifetime expires,
// and pay no attention to the descriptor's revision counter.
// When it expires, we discard it completely and try to obtain a new one.
// https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914448
// TODO SPEC: Discuss HS descriptor lifetime and expiry client behaviour
if let Some(previously) = data {
let now = self.runtime.wallclock();
if let Ok(_desc) = previously.as_ref().check_valid_at(&now) {
// Ideally we would just return desc but that confuses borrowck.
// https://github.com/rust-lang/rust/issues/51545
return Ok(data
.as_ref()
.expect("Some but now None")
.as_ref()
.check_valid_at(&now)
.expect("Ok but now Err"));
}
// Seems to be not valid now. Try to fetch a fresh one.
}
let hs_dirs = self.netdir.hs_dirs_download(
(self.hs_blind_id, self.netdir.hs_time_period()),
&mut self.mocks.thread_rng(),
)?;
trace!(
"HS desc fetch for {}, using {} hsdirs",
&self.hsid,
hs_dirs.len()
);
// We might consider launching multiple requests in parallel?
// https://gitlab.torproject.org/tpo/core/arti/-/merge_requests/1118#note_2894463
// But C Tor doesn't and our HS experts don't consider that important:
// https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914436
// TODO SPEC: Discuss hsdir descriptor fetch (non)-parallelism
let mut attempts = hs_dirs.iter().cycle().take(max_total_attempts);
let mut errors = RetryError::in_attempt_to("retrieve hidden service descriptor");
let desc = loop {
let relay = match attempts.next() {
Some(relay) => relay,
None => {
return Err(if errors.is_empty() {
CE::NoHsDirs
} else {
CE::DescriptorDownload(errors)
})
}
};
let hsdir_for_error: Sensitive<Ed25519Identity> = (*relay.id()).into();
match self
.runtime
.timeout(each_timeout, self.descriptor_fetch_attempt(relay))
.await
.unwrap_or(Err(DescriptorErrorDetail::Timeout))
{
Ok(desc) => break desc,
Err(error) => {
debug_report!(
&error,
"failed hsdir desc fetch for {} from {}",
&self.hsid,
&relay.id(),
);
errors.push(tor_error::Report(DescriptorError {
hsdir: hsdir_for_error,
error,
}));
}
}
};
// Store the bounded value in the cache for reuse,
// but return a reference to the unwrapped `HsDesc`.
//
// The `HsDesc` must be owned by `data.desc`,
// so first add it to `data.desc`,
// and then dangerously_assume_timely to get a reference out again.
//
// It is safe to dangerously_assume_timely,
// as descriptor_fetch_attempt has already checked the timeliness of the descriptor.
let ret = data.insert(desc);
Ok(ret.as_ref().dangerously_assume_timely())
}
/// Make one attempt to fetch the descriptor from a specific hsdir
///
/// No timeout
///
/// On success, returns the descriptor.
///
/// While the returned descriptor is `TimerangeBound`, its validity at the current time *has*
/// been checked.
async fn descriptor_fetch_attempt(
&self,
hsdir: &Relay<'_>,
) -> Result<TimerangeBound<HsDesc>, DescriptorErrorDetail> {
let max_len: usize = self
.netdir
.params()
.hsdir_max_desc_size
.get()
.try_into()
.map_err(into_internal!("BoundedInt was not truly bounded!"))?;
let request = {
let mut r = tor_dirclient::request::HsDescDownloadRequest::new(self.hs_blind_id);
r.set_max_len(max_len);
r
};
trace!(
"hsdir for {}, trying {}/{}, request {:?} (http request {:?}",
&self.hsid,
&hsdir.id(),
&hsdir.rsa_id(),
&request,
request.make_request()
);
let circuit = self
.circpool
.m_get_or_launch_specific(
&self.netdir,
HsCircKind::ClientHsDir,
OwnedCircTarget::from_circ_target(hsdir),
)
.await?;
let mut stream = circuit
.m_begin_dir_stream()
.await
.map_err(DescriptorErrorDetail::Stream)?;
let response = tor_dirclient::send_request(self.runtime, &request, &mut stream, None)
.await
.map_err(|dir_error| match dir_error {
tor_dirclient::Error::RequestFailed(rfe) => DescriptorErrorDetail::from(rfe.error),
tor_dirclient::Error::CircMgr(ce) => into_internal!(
"tor-dirclient complains about circmgr going wrong but we gave it a stream"
)(ce)
.into(),
other => into_internal!(
"tor-dirclient gave unexpected error, tor-hsclient code needs updating"
)(other)
.into(),
})?;
let desc_text = response.into_output_string().map_err(|rfe| rfe.error)?;
let hsc_desc_enc = self.secret_keys.keys.ks_hsc_desc_enc.as_ref();
let now = self.runtime.wallclock();
HsDesc::parse_decrypt_validate(
&desc_text,
&self.hs_blind_id,
now,
&self.subcredential,
hsc_desc_enc,
)
.map_err(DescriptorErrorDetail::from)
}
/// Given the descriptor, try to connect to service
///
/// Does all necessary retries, timeouts, etc.
async fn intro_rend_connect(
&self,
desc: &HsDesc,
data: &mut DataIpts,
) -> Result<Arc<ClientCirc!(R, M)>, CE> {
// Maximum number of rendezvous/introduction attempts we'll make
let max_total_attempts = self
.config
.retry
.hs_intro_rend_attempts()
.try_into()
// User specified a very large u32. We must be downcasting it to 16bit!
// let's give them as many retries as we can manage.
.unwrap_or(usize::MAX);
// Limit on the duration of each attempt to establish a rendezvous point
//
// This *might* include establishing a fresh circuit,
// if the HsCircPool's pool is empty.
let rend_timeout = self.estimate_timeout(&[
(1, TimeoutsAction::BuildCircuit { length: HOPS }), // build circuit
(1, TimeoutsAction::RoundTrip { length: HOPS }), // One ESTABLISH_RENDEZVOUS
]);
// Limit on the duration of each attempt to negotiate with an introduction point
//
// *Does* include establishing the circuit.
let intro_timeout = self.estimate_timeout(&[
(1, TimeoutsAction::BuildCircuit { length: HOPS }), // build circuit
// This does some crypto too, but we don't account for that.
(1, TimeoutsAction::RoundTrip { length: HOPS }), // One INTRODUCE1/INTRODUCE_ACK
]);
// Limit on the duration of each attempt for activities involving both RPT and IPT
let hs_hops = if desc.is_single_onion_service() {
1
} else {
HOPS
};
let rpt_ipt_timeout = self.estimate_timeout(&[
// The API requires us to specify a number of circuit builds and round trips.
// So what we tell the estimator is a rather imprecise description.
// (TODO it would be nice if the circmgr offered us a one-way trip Action).
//
// What we are timing here is:
//
// INTRODUCE2 goes from IPT to HS
// but that happens in parallel with us waiting for INTRODUCE_ACK,
// which is controlled by `intro_timeout` so not pat of `ipt_rpt_timeout`.
// and which has to come HOPS hops. So don't count INTRODUCE2 here.
//
// HS builds to our RPT
(1, TimeoutsAction::BuildCircuit { length: hs_hops }),
//
// RENDEZVOUS1 goes from HS to RPT. `hs_hops`, one-way.
// RENDEZVOUS2 goes from RPT to us. HOPS, one-way.
// Together, we squint a bit and call this a HOPS round trip:
(1, TimeoutsAction::RoundTrip { length: HOPS }),
]);
// We can't reliably distinguish IPT failure from RPT failure, so we iterate over IPTs
// (best first) and each time use a random RPT.
// We limit the number of rendezvous establishment attempts, separately, since we don't
// try to talk to the intro pt until we've established the rendezvous circuit.
let mut rend_attempts = 0..max_total_attempts;
// But, we put all the errors into the same bucket, since we might have a mixture.
let mut errors = RetryError::in_attempt_to("make circuit to to hidden service");
// Note that IntroPtIndex is *not* the index into this Vec.
// It is the index into the original list of introduction points in the descriptor.
let mut usable_intros: Vec<UsableIntroPt> = desc
.intro_points()
.iter()
.enumerate()
.map(|(intro_index, intro_desc)| {
let intro_index = intro_index.into();
let intro_target = ipt_to_circtarget(intro_desc, &self.netdir)
.map_err(|error| FAE::UnusableIntro { error, intro_index })?;
// Lack of TAIT means this clone
let intro_target = OwnedCircTarget::from_circ_target(&intro_target);
Ok::<_, FailedAttemptError>(UsableIntroPt {
intro_index,
intro_desc,
intro_target,
sort_rand: self.mocks.thread_rng().gen(),
})
})
.filter_map(|entry| match entry {
Ok(y) => Some(y),
Err(e) => {
errors.push(e);
None
}
})
.collect_vec();
// Delete experience information for now-unlisted intro points
// Otherwise, as the IPTs change `Data` might grow without bound,
// if we keep reconnecting to the same HS.
data.retain(|k, _v| {
usable_intros
.iter()
.any(|ipt| RelayIdForExperience::for_lookup(&ipt.intro_target).any(|id| &id == k))
});
// Join with existing state recording our experiences,
// sort by descending goodness, and then randomly
// (so clients without any experience don't all pile onto the same, first, IPT)
usable_intros.sort_by_key(|ipt: &UsableIntroPt| {
let experience =
RelayIdForExperience::for_lookup(&ipt.intro_target).find_map(|id| data.get(&id));
IptSortKey {
outcome: experience.into(),
sort_rand: ipt.sort_rand,
}
});
self.mocks.test_got_ipts(&usable_intros);
let mut intro_attempts = usable_intros.iter().cycle().take(max_total_attempts);
// We retain a rendezvous we managed to set up in here. That way if we created it, and
// then failed before we actually needed it, we can reuse it.
// If we exit with an error, we will waste it - but because we isolate things we do
// for different services, it wouldn't be reusable anyway.
let mut saved_rendezvous = None;
// We might consider making multiple attempts to different IPTs in in parallel,
// and somehow aggregating the errors and experiences.
// However our HS experts don't consider that important:
// https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914438
// TODO SPEC: Discuss HS introduction (non)-parallelism, possibly with same x,X
loop {
// When did we start doing things that depended on the IPT?
//
// Used for recording our experience with the selected IPT
let mut ipt_use_started = None::<Instant>;
// Error handling inner async block (analogous to an IEFE):
// * Ok(Some()) means this attempt succeeded
// * Ok(None) means all attempts exhausted
// * Err(error) means this attempt failed
//
// Error handling is rather complex here. It's the primary job of *this* code to
// make sure that it's done right for timeouts. (The individual component
// functions handle non-timeout errors.) The different timeout errors have
// different amounts of information about the identity of the RPT and IPT: in each
// case, the error only mentions the RPT or IPT if that node is implicated in the
// timeout.
let outcome = async {
// We establish a rendezvous point first. Although it appears from reading
// this code that this means we serialise establishment of the rendezvous and
// introduction circuits, this isn't actually the case. The circmgr maintains
// a pool of circuits. What actually happens in the "standing start" case is
// that we obtain a circuit for rendezvous from the circmgr's pool, expecting
// one to be available immediately; the circmgr will then start to build a new
// one to replenish its pool, and that happens in parallel with the work we do
// here - but in arrears. If the circmgr pool is empty, then we must wait.
//
// Perhaps this should be parallelised here. But that's really what the pool
// is for, since we expect building the rendezvous circuit and building the
// introduction circuit to take about the same length of time.
//
// We *do* serialise the ESTABLISH_RENDEZVOUS exchange, with the
// building of the introduction circuit. That could be improved, at the cost
// of some additional complexity here.
//
// Our HS experts don't consider it important to increase the parallelism:
// https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914444
// https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914445
//
// TODO SPEC: Discuss HS rendezvous (and rend vs intro) (non)-parallelism
if saved_rendezvous.is_none() {
debug!("hs conn to {}: setting up rendezvous point", &self.hsid);
// Establish a rendezvous circuit.
let Some(_): Option<usize> = rend_attempts.next() else {
return Ok(None);
};
let mut using_rend_pt = None;
saved_rendezvous = Some(
self.runtime
.timeout(rend_timeout, self.establish_rendezvous(&mut using_rend_pt))
.await
.map_err(|_: TimeoutError| match using_rend_pt {
None => FAE::RendezvousCircuitObtain {
error: tor_circmgr::Error::CircTimeout,
},
Some(rend_pt) => FAE::RendezvousEstablishTimeout { rend_pt },
})??,
);
}
let Some(ipt) = intro_attempts.next() else {
return Ok(None);
};
let intro_index = ipt.intro_index;
// We record how long things take, starting from here, as
// as a statistic we'll use for the IPT in future.
// This is stored in a variable outside this async block,
// so that the outcome handling can use it.
ipt_use_started = Some(self.runtime.now());
// No `Option::get_or_try_insert_with`, or we'd avoid this expect()
let rend_pt_for_error = rend_pt_identity_for_error(
&saved_rendezvous
.as_ref()
.expect("just made Some")
.rend_relay,
);
debug!(
"hs conn to {}: RPT {}",
&self.hsid,
rend_pt_for_error.as_inner()
);
let (rendezvous, introduced) = self
.runtime
.timeout(
intro_timeout,
self.exchange_introduce(ipt, &mut saved_rendezvous),
)
.await
.map_err(|_: TimeoutError| {
// The intro point ought to give us a prompt ACK regardless of HS
// behaviour or whatever is happening at the RPT, so blame the IPT.
FAE::IntroductionTimeout { intro_index }
})?
// TODO: Maybe try, once, to extend-and-reuse the intro circuit.
//
// If the introduction fails, the introduction circuit is in principle
// still usable. We believe that in this case, C Tor extends the intro
// circuit by one hop to the next IPT to try. That saves on building a
// whole new 3-hop intro circuit. However, our HS experts tell us that
// if introduction fails at one IPT it is likely to fail at the others too,
// so that optimisation might reduce our network impact and time to failure,
// but isn't likely to improve our chances of success.
//
// However, it's not clear whether this approach risks contaminating
// the 2nd attempt with some fault relating to the introduction point.
// The 1st ipt might also gain more knowledge about which HS we're talking to.
//
// TODO SPEC: Discuss extend-and-reuse HS intro circuit after nack
?;
#[allow(unused_variables)] // it's *supposed* to be unused
let saved_rendezvous = (); // don't use `saved_rendezvous` any more, use rendezvous
let rend_pt = rend_pt_identity_for_error(&rendezvous.rend_relay);
let circ = self
.runtime
.timeout(
rpt_ipt_timeout,
self.complete_rendezvous(ipt, rendezvous, introduced),
)
.await
.map_err(|_: TimeoutError| FAE::RendezvousCompletionTimeout {
intro_index,
rend_pt: rend_pt.clone(),
})??;
debug!(
"hs conn to {}: RPT {} IPT {}: success",
&self.hsid,
rend_pt.as_inner(),
intro_index,
);
Ok::<_, FAE>(Some((intro_index, circ)))
}
.await;
// Store the experience `outcome` we had with IPT `intro_index`, in `data`
#[allow(clippy::unused_unit)] // -> () is here for error handling clarity
let mut store_experience = |intro_index, outcome| -> () {
(|| {
let ipt = usable_intros
.iter()
.find(|ipt| ipt.intro_index == intro_index)
.ok_or_else(|| internal!("IPT not found by index"))?;
let id = RelayIdForExperience::for_store(&ipt.intro_target)?;
let started = ipt_use_started.ok_or_else(|| {
internal!("trying to record IPT use but no IPT start time noted")
})?;
let duration = self
.runtime
.now()
.checked_duration_since(started)
.ok_or_else(|| internal!("clock overflow calculating IPT use duration"))?;
data.insert(id, IptExperience { duration, outcome });
Ok::<_, Bug>(())
})()
.unwrap_or_else(|e| warn_report!(e, "error recording HS IPT use experience"));
};
match outcome {
Ok(Some((intro_index, y))) => {
// Record successful outcome in Data
store_experience(intro_index, Ok(()));
return Ok(y);
}
Ok(None) => return Err(CE::Failed(errors)),
Err(error) => {
debug_report!(&error, "hs conn to {}: attempt failed", &self.hsid);
// Record error outcome in Data, if in fact we involved the IPT
// at all. The IPT information is be retrieved from `error`,
// since only some of the errors implicate the introduction point.
if let Some(intro_index) = error.intro_index() {
store_experience(intro_index, Err(error.retry_time()));
}
errors.push(error);
}
}
}
}
/// Make one attempt to establish a rendezvous circuit
///
/// This doesn't really depend on anything,
/// other than (obviously) the isolation implied by our circuit pool.
/// In particular it doesn't depend on the introduction point.
///
/// Does not apply a timeout.
///
/// On entry `using_rend_pt` is `None`.
/// This function will store `Some` when it finds out which relay
/// it is talking to and starts to converse with it.
/// That way, if a timeout occurs, the caller can add that information to the error.
async fn establish_rendezvous(
&'c self,
using_rend_pt: &mut Option<RendPtIdentityForError>,
) -> Result<Rendezvous<R, M>, FAE> {
let (rend_circ, rend_relay) = self
.circpool
.m_get_or_launch_client_rend(&self.netdir)
.await
.map_err(|error| FAE::RendezvousCircuitObtain { error })?;
let rend_pt = rend_pt_identity_for_error(&rend_relay);
*using_rend_pt = Some(rend_pt.clone());
let rend_cookie: RendCookie = self.mocks.thread_rng().gen();
let message = EstablishRendezvous::new(rend_cookie);
let (rend_established_tx, rend_established_rx) = proto_oneshot::channel();
let (rend2_tx, rend2_rx) = proto_oneshot::channel();
/// Handler which expects `RENDEZVOUS_ESTABLISHED` and then
/// `RENDEZVOUS2`. Returns each message via the corresponding `oneshot`.
struct Handler {
/// Sender for a RENDEZVOUS_ESTABLISHED message.
rend_established_tx: proto_oneshot::Sender<RendezvousEstablished>,
/// Sender for a RENDEZVOUS2 message.
rend2_tx: proto_oneshot::Sender<Rendezvous2>,
}
impl MsgHandler for Handler {
fn handle_msg(
&mut self,
_conversation: ConversationInHandler<'_, '_, '_>,
msg: AnyRelayMsg,
) -> Result<MetaCellDisposition, tor_proto::Error> {
// The first message we expect is a RENDEZVOUS_ESTABALISHED.
if self.rend_established_tx.still_expected() {
self.rend_established_tx
.deliver_expected_message(msg, MetaCellDisposition::Consumed)
} else {
self.rend2_tx
.deliver_expected_message(msg, MetaCellDisposition::ConversationFinished)
}
}
}
debug!(
"hs conn to {}: RPT {}: sending ESTABLISH_RENDEZVOUS",
&self.hsid,
rend_pt.as_inner(),
);
let handle_proto_error = |error| FAE::RendezvousEstablish {
error,
rend_pt: rend_pt.clone(),
};
let handler = Handler {
rend_established_tx,
rend2_tx,
};
rend_circ
.m_start_conversation_last_hop(Some(message.into()), handler)
.await
.map_err(handle_proto_error)?;
// `start_conversation` returns as soon as the control message has been sent.
// We need to obtain the RENDEZVOUS_ESTABLISHED message, which is "returned" via the oneshot.
let _: RendezvousEstablished = rend_established_rx.recv(handle_proto_error).await?;
debug!(
"hs conn to {}: RPT {}: got RENDEZVOUS_ESTABLISHED",
&self.hsid,
rend_pt.as_inner(),
);
Ok(Rendezvous {
rend_circ,
rend_cookie,
rend_relay,
rend2_rx,
marker: PhantomData,
})
}
/// Attempt (once) to send an INTRODUCE1 and wait for the INTRODUCE_ACK
///
/// `take`s the input `rednezvous` (but only takes it if it gets that far)
/// and, if successful, returns it.
/// (This arranges that the rendezvous is "used up" precisely if
/// we sent its secret somewhere.)
///
/// Although this function handles the `Rendezvous`,
/// nothing in it actually involves the rendezvous point.
/// So if there's a failure, it's purely to do with the introduction point.
///
/// Does not apply a timeout.
async fn exchange_introduce(
&'c self,
ipt: &UsableIntroPt<'_>,
rendezvous: &mut Option<Rendezvous<'c, R, M>>,
) -> Result<(Rendezvous<R, M>, Introduced<R, M>), FAE> {
let intro_index = ipt.intro_index;
debug!(
"hs conn to {}: IPT {}: obtaining intro circuit",
&self.hsid, intro_index,
);
let intro_circ = self
.circpool
.m_get_or_launch_specific(
&self.netdir,
HsCircKind::ClientIntro,
ipt.intro_target.clone(), // &OwnedCircTarget isn't CircTarget apparently
)
.await
.map_err(|error| FAE::IntroductionCircuitObtain { error, intro_index })?;
let rendezvous = rendezvous.take().ok_or_else(|| internal!("no rend"))?;
let rend_pt = rend_pt_identity_for_error(&rendezvous.rend_relay);
debug!(
"hs conn to {}: RPT {} IPT {}: making introduction",
&self.hsid,
rend_pt.as_inner(),
intro_index,
);
// Now we construct an introduce1 message and perform the first part of the
// rendezvous handshake.
//
// This process is tricky because the header of the INTRODUCE1 message
// -- which depends on the IntroPt configuration -- is authenticated as
// part of the HsDesc handshake.
// Construct the header, since we need it as input to our encryption.
let intro_header = {
let ipt_sid_key = ipt.intro_desc.ipt_sid_key();
let intro1 = Introduce1::new(
AuthKeyType::ED25519_SHA3_256,
ipt_sid_key.as_bytes().to_vec(),
vec![],
);
let mut header = vec![];
intro1
.encode_onto(&mut header)
.map_err(into_internal!("couldn't encode intro1 header"))?;
header
};
// Construct the introduce payload, which tells the onion service how to find
// our rendezvous point. (We could do this earlier if we wanted.)
let intro_payload = {
let onion_key =
intro_payload::OnionKey::NtorOnionKey(*rendezvous.rend_relay.ntor_onion_key());
let linkspecs = rendezvous
.rend_relay
.linkspecs()
.map_err(into_internal!("Couldn't encode link specifiers"))?;
let payload =
IntroduceHandshakePayload::new(rendezvous.rend_cookie, onion_key, linkspecs);
let mut encoded = vec![];
payload
.write_onto(&mut encoded)
.map_err(into_internal!("Couldn't encode introduce1 payload"))?;
encoded
};
// Perform the cryptographic handshake with the onion service.
let service_info = hs_ntor::HsNtorServiceInfo::new(
ipt.intro_desc.svc_ntor_key().clone(),
ipt.intro_desc.ipt_sid_key().clone(),
self.subcredential,
);
let handshake_state =
hs_ntor::HsNtorClientState::new(&mut self.mocks.thread_rng(), service_info);
let encrypted_body = handshake_state
.client_send_intro(&intro_header, &intro_payload)
.map_err(into_internal!("can't begin hs-ntor handshake"))?;
// Build our actual INTRODUCE1 message.
let intro1_real = Introduce1::new(
AuthKeyType::ED25519_SHA3_256,
ipt.intro_desc.ipt_sid_key().as_bytes().to_vec(),
encrypted_body,
);
/// Handler which expects just `INTRODUCE_ACK`
struct Handler {
/// Sender for `INTRODUCE_ACK`
intro_ack_tx: proto_oneshot::Sender<IntroduceAck>,
}
impl MsgHandler for Handler {
fn handle_msg(
&mut self,
_conversation: ConversationInHandler<'_, '_, '_>,
msg: AnyRelayMsg,
) -> Result<MetaCellDisposition, tor_proto::Error> {
self.intro_ack_tx
.deliver_expected_message(msg, MetaCellDisposition::ConversationFinished)
}
}
let handle_intro_proto_error = |error| FAE::IntroductionExchange { error, intro_index };
let (intro_ack_tx, intro_ack_rx) = proto_oneshot::channel();
let handler = Handler { intro_ack_tx };
debug!(
"hs conn to {}: RPT {} IPT {}: making introduction - sending INTRODUCE1",
&self.hsid,
rend_pt.as_inner(),
intro_index,
);
intro_circ
.m_start_conversation_last_hop(Some(intro1_real.into()), handler)
.await
.map_err(handle_intro_proto_error)?;
// Status is checked by `.success()`, and we don't look at the extensions;
// just discard the known-successful `IntroduceAck`
let _: IntroduceAck = intro_ack_rx
.recv(handle_intro_proto_error)
.await?
.success()
.map_err(|status| FAE::IntroductionFailed {
status,
intro_index,
})?;
debug!(
"hs conn to {}: RPT {} IPT {}: making introduction - success",
&self.hsid,
rend_pt.as_inner(),
intro_index,
);
// Having received INTRODUCE_ACK. we can forget about this circuit
// (and potentially tear it down).
// https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914434
// TODO SPEC: State that intro circuit can be discarded after ACK
drop(intro_circ);
Ok((
rendezvous,
Introduced {
handshake_state,
marker: PhantomData,
},
))
}
/// Attempt (once) to connect a rendezvous circuit using the given intro pt
///
/// Timeouts here might be due to the IPT, RPT, service,
/// or any of the intermediate relays.
///
/// If, rather than a timeout, we actually encounter some kind of error,
/// we'll return the appropriate `FailedAttemptError`.
/// (Who is responsible may vary, so the `FailedAttemptError` variant will reflect that.)
///
/// Does not apply a timeout
async fn complete_rendezvous(
&'c self,
ipt: &UsableIntroPt<'_>,
rendezvous: Rendezvous<'c, R, M>,
introduced: Introduced<R, M>,
) -> Result<Arc<ClientCirc!(R, M)>, FAE> {
use tor_proto::circuit::handshake;
let rend_pt = rend_pt_identity_for_error(&rendezvous.rend_relay);
let intro_index = ipt.intro_index;
let handle_proto_error = |error| FAE::RendezvousCompletionCircuitError {
error,
intro_index,
rend_pt: rend_pt.clone(),
};
debug!(
"hs conn to {}: RPT {} IPT {}: awaiting rendezvous completion",
&self.hsid,
rend_pt.as_inner(),
intro_index,
);
let rend2_msg: Rendezvous2 = rendezvous.rend2_rx.recv(handle_proto_error).await?;
debug!(
"hs conn to {}: RPT {} IPT {}: received RENDEZVOUS2",
&self.hsid,
rend_pt.as_inner(),
intro_index,
);
// In theory would be great if we could have multiple introduction attempts in parallel
// with similar x,X values but different IPTs. However, our HS experts don't
// think increasing parallelism here is important:
// https://gitlab.torproject.org/tpo/core/arti/-/issues/913#note_2914438
let handshake_state = introduced.handshake_state;
// Try to complete the cryptographic handshake.
let keygen = handshake_state
.client_receive_rend(rend2_msg.handshake_info())
// If this goes wrong. either the onion service has mangled the crypto,
// or the rendezvous point has misbehaved (that that is possible is a protocol bug),
// or we have used the wrong handshake_state (let's assume that's not true).
//
// If this happens we'll go and try another RPT.
.map_err(|error| FAE::RendezvousCompletionHandshake {
error,
intro_index,
rend_pt: rend_pt.clone(),
})?;
let params = circparameters_from_netparameters(self.netdir.params());
rendezvous
.rend_circ
.m_extend_virtual(
handshake::RelayProtocol::HsV3,
handshake::HandshakeRole::Initiator,
keygen,
params,
)
.await
.map_err(into_internal!(
"actually this is probably a 'circuit closed' error" // TODO HS
))?;
debug!(
"hs conn to {}: RPT {} IPT {}: HS circuit established",
&self.hsid,
rend_pt.as_inner(),
intro_index,
);
Ok(rendezvous.rend_circ)
}
/// Helper to estimate a timeout for a complicated operation
///
/// `actions` is a list of `(count, action)`, where each entry
/// represents doing `action`, `count` times sequentially.
///
/// Combines the timeout estimates and returns an overall timeout.
fn estimate_timeout(&self, actions: &[(u32, TimeoutsAction)]) -> Duration {
// This algorithm is, perhaps, wrong. For uncorrelated variables, a particular
// percentile estimate for a sum of random variables, is not calculated by adding the
// percentile estimates of the individual variables.
//
// But the actual lengths of times of the operations aren't uncorrelated.
// If they were *perfectly* correlated, then this addition would be correct.
// It will do for now; it just might be rather longer than it ought to be.
actions
.iter()
.map(|(count, action)| {
self.circpool
.m_estimate_timeout(action)
.saturating_mul(*count)
})
.fold(Duration::ZERO, Duration::saturating_add)
}
}
/// Mocks used for testing `connect.rs`
///
/// This is different to `MockableConnectorData`,
/// which is used to *replace* this file, when testing `state.rs`.
///
/// `MocksForConnect` provides mock facilities for *testing* this file.
//
// TODO this should probably live somewhere else, maybe tor-circmgr even?
// TODO this really ought to be made by macros or something
trait MocksForConnect<R>: Clone {
/// HS circuit pool
type HsCircPool: MockableCircPool<R>;
/// A random number generator
type Rng: rand::Rng + rand::CryptoRng;
/// Tell tests we got this descriptor text
fn test_got_desc(&self, _: &HsDesc) {}
/// Tell tests we got this circuit
fn test_got_circ(&self, _: &Arc<ClientCirc!(R, Self)>) {}
/// Tell tests we have obtained and sorted the intros like this
fn test_got_ipts(&self, _: &[UsableIntroPt]) {}
/// Return a random number generator
fn thread_rng(&self) -> Self::Rng;
}
/// Mock for `HsCircPool`
///
/// Methods start with `m_` to avoid the following problem:
/// `ClientCirc::start_conversation` (say) means
/// to use the inherent method if one exists,
/// but will use a trait method if there isn't an inherent method.
///
/// So if the inherent method is renamed, the call in the impl here
/// turns into an always-recursive call.
/// This is not detected by the compiler due to the situation being
/// complicated by futures, `#[async_trait]` etc.
/// <https://github.com/rust-lang/rust/issues/111177>
#[async_trait]
trait MockableCircPool<R> {
/// Client circuit
type ClientCirc: MockableClientCirc;
async fn m_get_or_launch_specific(
&self,
netdir: &NetDir,
kind: HsCircKind,
target: impl CircTarget + Send + Sync + 'async_trait,
) -> tor_circmgr::Result<Arc<Self::ClientCirc>>;
/// Client circuit
async fn m_get_or_launch_client_rend<'a>(
&self,
netdir: &'a NetDir,
) -> tor_circmgr::Result<(Arc<Self::ClientCirc>, Relay<'a>)>;
/// Estimate timeout
fn m_estimate_timeout(&self, action: &TimeoutsAction) -> Duration;
}
/// Mock for `ClientCirc`
#[async_trait]
trait MockableClientCirc: Debug {
/// Client circuit
type DirStream: AsyncRead + AsyncWrite + Send + Unpin;
async fn m_begin_dir_stream(self: Arc<Self>) -> tor_proto::Result<Self::DirStream>;
/// Converse
async fn m_start_conversation_last_hop(
&self,
msg: Option<AnyRelayMsg>,
reply_handler: impl MsgHandler + Send + 'static,
) -> tor_proto::Result<Self::Conversation<'_>>;
/// Conversation
type Conversation<'r>
where
Self: 'r;
/// Add a virtual hop to the circuit.
async fn m_extend_virtual(
&self,
protocol: tor_proto::circuit::handshake::RelayProtocol,
protocol: tor_proto::circuit::handshake::HandshakeRole,
handshake: impl tor_proto::circuit::handshake::KeyGenerator + Send,
params: CircParameters,
) -> tor_proto::Result<()>;
}
impl<R: Runtime> MocksForConnect<R> for () {
type HsCircPool = HsCircPool<R>;
type Rng = rand::rngs::ThreadRng;
fn thread_rng(&self) -> Self::Rng {
rand::thread_rng()
}
}
#[async_trait]
impl<R: Runtime> MockableCircPool<R> for HsCircPool<R> {
type ClientCirc = ClientCirc;
async fn m_get_or_launch_specific(
&self,
netdir: &NetDir,
kind: HsCircKind,
target: impl CircTarget + Send + Sync + 'async_trait,
) -> tor_circmgr::Result<Arc<ClientCirc>> {
HsCircPool::get_or_launch_specific(self, netdir, kind, target).await
}
async fn m_get_or_launch_client_rend<'a>(
&self,
netdir: &'a NetDir,
) -> tor_circmgr::Result<(Arc<ClientCirc>, Relay<'a>)> {
HsCircPool::get_or_launch_client_rend(self, netdir).await
}
fn m_estimate_timeout(&self, action: &TimeoutsAction) -> Duration {
HsCircPool::estimate_timeout(self, action)
}
}
#[async_trait]
impl MockableClientCirc for ClientCirc {
/// Client circuit
type DirStream = tor_proto::stream::DataStream;
async fn m_begin_dir_stream(self: Arc<Self>) -> tor_proto::Result<Self::DirStream> {
ClientCirc::begin_dir_stream(self).await
}
async fn m_start_conversation_last_hop(
&self,
msg: Option<AnyRelayMsg>,
reply_handler: impl MsgHandler + Send + 'static,
) -> tor_proto::Result<Self::Conversation<'_>> {
let last_hop = self.last_hop_num()?;
ClientCirc::start_conversation(self, msg, reply_handler, last_hop).await
}
type Conversation<'r> = tor_proto::circuit::Conversation<'r>;
async fn m_extend_virtual(
&self,
protocol: tor_proto::circuit::handshake::RelayProtocol,
role: tor_proto::circuit::handshake::HandshakeRole,
handshake: impl tor_proto::circuit::handshake::KeyGenerator + Send,
params: CircParameters,
) -> tor_proto::Result<()> {
ClientCirc::extend_virtual(self, protocol, role, handshake, params).await
}
}
#[async_trait]
impl MockableConnectorData for Data {
type ClientCirc = ClientCirc;
type MockGlobalState = ();
async fn connect<R: Runtime>(
connector: &HsClientConnector<R>,
netdir: Arc<NetDir>,
config: Arc<Config>,
hsid: HsId,
data: &mut Self,
secret_keys: HsClientSecretKeys,
) -> Result<Arc<Self::ClientCirc>, ConnError> {
connect(connector, netdir, config, hsid, data, secret_keys).await
}
fn circuit_is_ok(circuit: &Self::ClientCirc) -> bool {
!circuit.is_closing()
}
}
#[cfg(test)]
mod test {
// @@ begin test lint list maintained by maint/add_warning @@
#![allow(clippy::bool_assert_comparison)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::dbg_macro)]
#![allow(clippy::print_stderr)]
#![allow(clippy::print_stdout)]
#![allow(clippy::single_char_pattern)]
#![allow(clippy::unwrap_used)]
#![allow(clippy::unchecked_duration_subtraction)]
#![allow(clippy::useless_vec)]
#![allow(clippy::needless_pass_by_value)]
//! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
#![allow(dead_code, unused_variables)] // TODO HS TESTS delete, after tests are completed
use super::*;
use crate::*;
use futures::FutureExt as _;
use std::ops::{Bound, RangeBounds};
use std::{iter, panic::AssertUnwindSafe};
use tokio_crate as tokio;
use tor_async_utils::JoinReadWrite;
use tor_basic_utils::test_rng::{testing_rng, TestingRng};
use tor_hscrypto::pk::{HsClientDescEncKey, HsClientDescEncKeypair};
use tor_llcrypto::pk::curve25519;
use tor_netdoc::doc::{hsdesc::test_data, netstatus::Lifetime};
use tor_rtcompat::{tokio::TokioNativeTlsRuntime, CompoundRuntime};
use tor_rtmock::time::MockSleepProvider;
use tracing_test::traced_test;
#[derive(Debug, Default)]
struct MocksGlobal {
hsdirs_asked: Vec<OwnedCircTarget>,
got_desc: Option<HsDesc>,
}
#[derive(Clone, Debug)]
struct Mocks<I> {
mglobal: Arc<Mutex<MocksGlobal>>,
id: I,
}
impl<I> Mocks<I> {
fn map_id<J>(&self, f: impl FnOnce(&I) -> J) -> Mocks<J> {
Mocks {
mglobal: self.mglobal.clone(),
id: f(&self.id),
}
}
}
impl<R: Runtime> MocksForConnect<R> for Mocks<()> {
type HsCircPool = Mocks<()>;
type Rng = TestingRng;
fn test_got_desc(&self, desc: &HsDesc) {
self.mglobal.lock().unwrap().got_desc = Some(desc.clone());
}
fn test_got_ipts(&self, desc: &[UsableIntroPt]) {}
fn thread_rng(&self) -> Self::Rng {
testing_rng()
}
}
#[allow(clippy::diverging_sub_expression)] // async_trait + todo!()
#[async_trait]
impl<R: Runtime> MockableCircPool<R> for Mocks<()> {
type ClientCirc = Mocks<()>;
async fn m_get_or_launch_specific(
&self,
_netdir: &NetDir,
kind: HsCircKind,
target: impl CircTarget + Send + Sync + 'async_trait,
) -> tor_circmgr::Result<Arc<Self::ClientCirc>> {
assert_eq!(kind, HsCircKind::ClientHsDir);
let target = OwnedCircTarget::from_circ_target(&target);
self.mglobal.lock().unwrap().hsdirs_asked.push(target);
// Adding the `Arc` here is a little ugly, but that's what we get
// for using the same Mocks for everything.
Ok(Arc::new(self.clone()))
}
/// Client circuit
async fn m_get_or_launch_client_rend<'a>(
&self,
netdir: &'a NetDir,
) -> tor_circmgr::Result<(Arc<ClientCirc!(R, Self)>, Relay<'a>)> {
todo!()
}
fn m_estimate_timeout(&self, action: &TimeoutsAction) -> Duration {
Duration::from_secs(10)
}
}
#[allow(clippy::diverging_sub_expression)] // async_trait + todo!()
#[async_trait]
impl MockableClientCirc for Mocks<()> {
type DirStream = JoinReadWrite<futures::io::Cursor<Box<[u8]>>, futures::io::Sink>;
type Conversation<'r> = &'r ();
async fn m_begin_dir_stream(self: Arc<Self>) -> tor_proto::Result<Self::DirStream> {
let response = format!(
r#"HTTP/1.1 200 OK
{}"#,
test_data::TEST_DATA_2
)
.into_bytes()
.into_boxed_slice();
Ok(JoinReadWrite::new(
futures::io::Cursor::new(response),
futures::io::sink(),
))
}
async fn m_start_conversation_last_hop(
&self,
msg: Option<AnyRelayMsg>,
reply_handler: impl MsgHandler + Send + 'static,
) -> tor_proto::Result<Self::Conversation<'_>> {
todo!()
}
async fn m_extend_virtual(
&self,
protocol: tor_proto::circuit::handshake::RelayProtocol,
role: tor_proto::circuit::handshake::HandshakeRole,
handshake: impl tor_proto::circuit::handshake::KeyGenerator + Send,
params: CircParameters,
) -> tor_proto::Result<()> {
todo!()
}
}
#[traced_test]
#[tokio::test]
async fn test_connect() {
let valid_after = humantime::parse_rfc3339("2023-02-09T12:00:00Z").unwrap();
let fresh_until = valid_after + humantime::parse_duration("1 hours").unwrap();
let valid_until = valid_after + humantime::parse_duration("24 hours").unwrap();
let lifetime = Lifetime::new(valid_after, fresh_until, valid_until).unwrap();
let netdir = tor_netdir::testnet::construct_custom_netdir_with_params(
tor_netdir::testnet::simple_net_func,
iter::empty::<(&str, _)>(),
Some(lifetime),
)
.expect("failed to build default testing netdir");
let netdir = Arc::new(netdir.unwrap_if_sufficient().unwrap());
let runtime = TokioNativeTlsRuntime::current().unwrap();
let now = humantime::parse_rfc3339("2023-02-09T12:00:00Z").unwrap();
let mock_sp = MockSleepProvider::new(now);
let runtime = CompoundRuntime::new(
runtime.clone(),
mock_sp,
runtime.clone(),
runtime.clone(),
runtime,
);
let time_period = netdir.hs_time_period();
let mglobal = Arc::new(Mutex::new(MocksGlobal::default()));
let mocks = Mocks { mglobal, id: () };
// From C Tor src/test/test_hs_common.c test_build_address
let hsid = test_data::TEST_HSID_2.into();
let mut data = Data::default();
let pk: HsClientDescEncKey = curve25519::PublicKey::from(test_data::TEST_PUBKEY_2).into();
let sk = curve25519::StaticSecret::from(test_data::TEST_SECKEY_2).into();
let mut secret_keys_builder = HsClientSecretKeysBuilder::default();
secret_keys_builder.ks_hsc_desc_enc(HsClientDescEncKeypair::new(pk.clone(), sk));
let secret_keys = secret_keys_builder.build().unwrap();
let ctx = Context::new(
&runtime,
&mocks,
netdir,
Default::default(),
hsid,
secret_keys,
mocks.clone(),
)
.unwrap();
let _got = AssertUnwindSafe(ctx.connect(&mut data))
.catch_unwind() // TODO HS TESTS: remove this and the AssertUnwindSafe
.await;
let (hs_blind_id_key, subcredential) = HsIdKey::try_from(hsid)
.unwrap()
.compute_blinded_key(time_period)
.unwrap();
let hs_blind_id = hs_blind_id_key.id();
let sk = curve25519::StaticSecret::from(test_data::TEST_SECKEY_2).into();
let hsdesc = HsDesc::parse_decrypt_validate(
test_data::TEST_DATA_2,
&hs_blind_id,
now,
&subcredential,
Some(&HsClientDescEncKeypair::new(pk, sk)),
)
.unwrap()
.dangerously_assume_timely();
let mglobal = mocks.mglobal.lock().unwrap();
assert_eq!(mglobal.hsdirs_asked.len(), 1);
// TODO hs: here and in other places, consider implementing PartialEq instead, or creating
// an assert_dbg_eq macro (which would be part of a test_helpers crate or something)
assert_eq!(
format!("{:?}", mglobal.got_desc),
format!("{:?}", Some(hsdesc))
);
// Check how long the descriptor is valid for
let bounds = data.desc.as_ref().unwrap().bounds();
assert_eq!(bounds.start_bound(), Bound::Unbounded);
let desc_valid_until = humantime::parse_rfc3339("2023-02-11T20:00:00Z").unwrap();
assert_eq!(
bounds.end_bound(),
Bound::Included(desc_valid_until).as_ref()
);
// TODO HS TESTS: check the circuit in got is the one we gave out
// TODO HS TESTS: continue with this
}
// TODO HS TESTS: Test IPT state management and expiry:
// - obtain a test descriptor with only a broken ipt
// (broken in the sense that intro can be attempted, but will fail somehow)
// - try to make a connection and expect it to fail
// - assert that the ipt data isn't empty
// - cause the descriptor to expire (advance clock)
// - start using a mocked RNG if we weren't already and pin its seed here
// - make a new descriptor with two IPTs: the broken one from earlier, and a new one
// - make a new connection
// - use test_got_ipts to check that the random numbers
// would sort the bad intro first, *and* that the good one is appears first
// - assert that connection succeeded
// - cause the circuit and descriptor to expire (advance clock)
// - go back to the previous descriptor contents, but with a new validity period
// - try to make a connection
// - use test_got_ipts to check that only the broken ipt is present
// TODO HS TESTS: test retries (of every retry loop we have here)
// TODO HS TESTS: test error paths
}