1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
//! Implement Tor's sort-of-Pareto estimator for circuit build timeouts.
//!
//! Our build times don't truly follow a
//! [Pareto](https://en.wikipedia.org/wiki/Pareto_distribution)
//! distribution; instead they seem to be closer to a
//! [Fréchet](https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution)
//! distribution.  But those are hard to work with, and we only care
//! about the right tail, so we're using Pareto instead.
//!
//! This estimator also includes several heuristics and kludges to
//! try to behave better on unreliable networks.
//! For more information on the exact algorithms and their rationales,
//! see [`path-spec.txt`](https://gitlab.torproject.org/tpo/core/torspec/-/blob/master/path-spec.txt).

use bounded_vec_deque::BoundedVecDeque;
use serde::{Deserialize, Serialize};
use std::collections::{BTreeMap, HashMap};
use std::time::Duration;
use tor_netdir::params::NetParameters;

use super::Action;
use tor_persist::JsonValue;

/// How many circuit build time observations do we record?
const TIME_HISTORY_LEN: usize = 1000;

/// How many circuit success-versus-timeout observations do we record
/// by default?
const SUCCESS_HISTORY_DEFAULT_LEN: usize = 20;

/// How many milliseconds wide is each bucket in our histogram?
const BUCKET_WIDTH_MSEC: u32 = 10;

/// A circuit build time or timeout duration, measured in milliseconds.
///
/// Requires that we don't care about tracking timeouts above u32::MAX
/// milliseconds (about 49 days).
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize)]
#[serde(transparent)]
struct MsecDuration(u32);

impl MsecDuration {
    /// Convert a Duration into a MsecDuration, saturating
    /// extra-high values to u32::MAX milliseconds.
    fn new_saturating(d: &Duration) -> Self {
        let msec = std::cmp::min(d.as_millis(), u128::from(u32::MAX)) as u32;
        MsecDuration(msec)
    }
}

/// Module to hold calls to const_assert.
///
/// This is a separate module so we can change the clippy warnings on it.
#[allow(clippy::checked_conversions)]
mod assertion {
    use static_assertions::const_assert;
    // If this assertion is untrue, then we can't safely use u16 fields in
    // time_histogram.
    const_assert!(super::TIME_HISTORY_LEN <= u16::MAX as usize);
}

/// A history of circuit timeout observations, used to estimate our
/// likely circuit timeouts.
#[derive(Debug, Clone)]
struct History {
    /// Our most recent observed circuit construction times.
    ///
    /// For the purpose of this estimator, a circuit counts as
    /// "constructed" when a certain "significant" hop (typically the third)
    /// is completed.
    time_history: BoundedVecDeque<MsecDuration>,

    /// A histogram representation of the values in [`History::time_history`].
    ///
    /// This histogram is implemented as a sparse map from the center
    /// value of each histogram bucket to the number of entries in
    /// that bucket.  It is completely derivable from time_history; we
    /// keep it separate here for efficiency.
    time_histogram: BTreeMap<MsecDuration, u16>,

    /// Our most recent circuit timeout statuses.
    ///
    /// Each `true` value represents a successfully completed circuit
    /// (all hops).  Each `false` value represents a circuit that
    /// timed out after having completed at least one hop.
    success_history: BoundedVecDeque<bool>,
}

impl History {
    /// Initialize a new empty `History` with no observations.
    fn new_empty() -> Self {
        History {
            time_history: BoundedVecDeque::new(TIME_HISTORY_LEN),
            time_histogram: BTreeMap::new(),
            success_history: BoundedVecDeque::new(SUCCESS_HISTORY_DEFAULT_LEN),
        }
    }

    /// Remove all observations from this `History`.
    fn clear(&mut self) {
        self.time_history.clear();
        self.time_histogram.clear();
        self.success_history.clear();
    }

    /// Change the number of successes to record in our success
    /// history to `n`.
    fn set_success_history_len(&mut self, n: usize) {
        if n < self.success_history.len() {
            self.success_history
                .drain(0..(self.success_history.len() - n));
        }
        self.success_history.set_max_len(n);
    }

    /// Change the number of circuit time observations to record in
    /// our time history to `n`.
    ///
    /// This is a testing-only function.
    #[cfg(test)]
    fn set_time_history_len(&mut self, n: usize) {
        self.time_history.set_max_len(n);
    }

    /// Construct a new `History` from an iterator representing a sparse
    /// histogram of values.
    ///
    /// The input must be a sequence of `(D,N)` tuples, where each `D`
    /// represents a circuit build duration, and `N` represents the
    /// number of observations with that duration.
    ///
    /// These observations are shuffled into a random order, then
    /// added to a new History.
    fn from_sparse_histogram<I>(iter: I) -> Self
    where
        I: Iterator<Item = (MsecDuration, u16)>,
    {
        use rand::seq::{IteratorRandom, SliceRandom};
        use std::iter;
        let mut rng = rand::thread_rng();

        // We want to build a vector with the elements of the old histogram in
        // random order, but we want to defend ourselves against bogus inputs
        // that would take too much RAM.
        let mut observations = iter
            .take(TIME_HISTORY_LEN) // limit number of bins
            .flat_map(|(dur, n)| iter::repeat(dur).take(n as usize))
            .choose_multiple(&mut rng, TIME_HISTORY_LEN);
        // choose_multiple doesn't guarantee anything about the order of its output.
        observations.shuffle(&mut rng);

        let mut result = History::new_empty();
        for obs in observations {
            result.add_time(obs);
        }

        result
    }

    /// Return an iterator yielding a sparse histogram of the circuit build
    /// time values in this `History`.
    ///
    /// Each histogram entry is a `(D,N)` tuple, where `D` is the
    /// center of a histogram bucket, and `N` is the number of
    /// observations in that bucket.
    ///
    /// Buckets with `N=0` are omitted.  Buckets are yielded in order.
    fn sparse_histogram(&self) -> impl Iterator<Item = (MsecDuration, u16)> + '_ {
        self.time_histogram.iter().map(|(d, n)| (*d, *n))
    }

    /// Return the center value for the bucket containing `time`.
    fn bucket_center(time: MsecDuration) -> MsecDuration {
        let idx = time.0 / BUCKET_WIDTH_MSEC;
        let msec = (idx * BUCKET_WIDTH_MSEC) + (BUCKET_WIDTH_MSEC) / 2;
        MsecDuration(msec)
    }

    /// Increment the histogram bucket containing `time` by one.
    fn inc_bucket(&mut self, time: MsecDuration) {
        let center = History::bucket_center(time);
        *self.time_histogram.entry(center).or_insert(0) += 1;
    }

    /// Decrement the histogram bucket containing `time` by one, removing
    /// it if it becomes 0.
    fn dec_bucket(&mut self, time: MsecDuration) {
        use std::collections::btree_map::Entry;
        let center = History::bucket_center(time);
        match self.time_histogram.entry(center) {
            Entry::Vacant(_) => {
                // this is a bug.
            }
            Entry::Occupied(e) if e.get() <= &1 => {
                e.remove();
            }
            Entry::Occupied(mut e) => {
                *e.get_mut() -= 1;
            }
        }
    }

    /// Add `time` to our list of circuit build time observations, and
    /// adjust the histogram accordingly.
    fn add_time(&mut self, time: MsecDuration) {
        match self.time_history.push_back(time) {
            None => {}
            Some(removed_time) => {
                // `removed_time` just fell off the end of the deque:
                // remove it from the histogram.
                self.dec_bucket(removed_time);
            }
        }
        self.inc_bucket(time);
    }

    /// Return the number of observations in our time history.
    ///
    /// This will always be `<= TIME_HISTORY_LEN`.
    fn n_times(&self) -> usize {
        self.time_history.len()
    }

    /// Record a success (true) or timeout (false) in our record of whether
    /// circuits timed out or not.
    fn add_success(&mut self, succeeded: bool) {
        self.success_history.push_back(succeeded);
    }

    /// Return the number of timeouts recorded in our success history.
    fn n_recent_timeouts(&self) -> usize {
        self.success_history.iter().filter(|x| !**x).count()
    }

    /// Helper: return the `n` most frequent histogram bins.
    fn n_most_frequent_bins(&self, n: usize) -> Vec<(MsecDuration, u16)> {
        use itertools::Itertools;
        // we use cmp::Reverse here so that we can use k_smallest as
        // if it were "k_largest".
        use std::cmp::Reverse;

        // We want the buckets that have the _largest_ counts; we want
        // to break ties in favor of the _smallest_ values.  So we
        // apply Reverse only to the counts before passing the tuples
        // to k_smallest.

        self.sparse_histogram()
            .map(|(center, count)| (Reverse(count), center))
            // (k_smallest runs in O(n_bins * lg(n))
            .k_smallest(n)
            .into_iter()
            .map(|(Reverse(count), center)| (center, count))
            .collect()
    }

    /// Return an estimator for the `X_m` of our Pareto distribution,
    /// by looking at the `n_modes` most frequently filled histogram
    /// bins.
    ///
    /// It is not a true `X_m` value, since there are definitely
    /// values less than this, but it seems to work as a decent
    /// heuristic.
    ///
    /// Return `None` if we have no observations.
    fn estimate_xm(&self, n_modes: usize) -> Option<u32> {
        // From path-spec:
        //   Tor clients compute the Xm parameter using the weighted
        //   average of the midpoints of the 'cbtnummodes' (10)
        //   most frequently occurring 10ms histogram bins.

        // The most frequently used bins.
        let bins = self.n_most_frequent_bins(n_modes);
        // Total number of observations in these bins.
        let n_observations: u16 = bins.iter().map(|(_, n)| n).sum();
        // Sum of all observations in these bins.
        let total_observations: u64 = bins
            .iter()
            .map(|(d, n)| u64::from(d.0 * u32::from(*n)))
            .sum();

        if n_observations == 0 {
            None
        } else {
            Some((total_observations / u64::from(n_observations)) as u32)
        }
    }

    /// Compute a maximum-likelihood pareto distribution based on this
    /// history, computing `X_m` based on the `n_modes` most frequent
    /// histograms.
    ///
    /// Return None if we have no observations.
    fn pareto_estimate(&self, n_modes: usize) -> Option<ParetoDist> {
        let xm = self.estimate_xm(n_modes)?;

        // From path-spec:
        //     alpha = n/(Sum_n{ln(MAX(Xm, x_i))} - n*ln(Xm))

        let n = self.time_history.len();
        let sum_of_log_observations: f64 = self
            .time_history
            .iter()
            .map(|m| f64::from(std::cmp::max(m.0, xm)).ln())
            .sum();
        let sum_of_log_xm = (n as f64) * f64::from(xm).ln();

        // We're computing 1/alpha here, instead of alpha.  This avoids
        // division by zero, and has the advantage of being what our
        // quantile estimator actually needs.
        let inv_alpha = (sum_of_log_observations - sum_of_log_xm) / (n as f64);

        Some(ParetoDist {
            x_m: f64::from(xm),
            inv_alpha,
        })
    }
}

/// A Pareto distribution, for use in estimating timeouts.
///
/// Values are represented by a number of milliseconds.
#[derive(Debug)]
struct ParetoDist {
    /// The lower bound for the pareto distribution.
    x_m: f64,
    /// The inverse of the alpha parameter in the pareto distribution.
    ///
    /// (We use 1/alpha here to save a step in [`ParetoDist::quantile`].
    inv_alpha: f64,
}

impl ParetoDist {
    /// Compute an inverse CDF for this distribution.
    ///
    /// Given a `q` value between 0 and 1, compute a distribution `v`
    /// value such that `q` of the Pareto Distribution is expected to
    /// be less than `v`.
    ///
    /// If `q` is out of bounds, it is clamped to [0.0, 1.0].
    fn quantile(&self, q: f64) -> f64 {
        let q = q.clamp(0.0, 1.0);
        self.x_m / ((1.0 - q).powf(self.inv_alpha))
    }
}

/// A set of parameters determining the behavior of a ParetoTimeoutEstimator.
///
/// These are typically derived from a set of consensus parameters.
#[derive(Clone, Debug)]
pub(crate) struct Params {
    /// Should we use our estimates when deciding on circuit timeouts.
    ///
    /// When this is false, our timeouts are fixed to the default.
    use_estimates: bool,
    /// How many observations must we have made before we can use our
    /// Pareto estimators to guess a good set of timeouts?
    min_observations: u16,
    /// Which hop is the "significant hop" we should use when recording circuit
    /// build times?  (Watch out! This is zero-indexed.)
    significant_hop: u8,
    /// A quantile (in range [0.0,1.0]) describing a point in the
    /// Pareto distribution to use when determining when a circuit
    /// should be treated as having "timed out".
    ///
    /// (A "timed out" circuit continues building for measurement
    /// purposes, but can't be used for traffic.)
    timeout_quantile: f64,
    /// A quantile (in range [0.0,1.0]) describing a point in the Pareto
    /// distribution to use when determining when a circuit should be
    /// "abandoned".
    ///
    /// (An "abandoned" circuit is stopped entirely, and not included
    /// in measurements.
    abandon_quantile: f64,
    /// Default values to return from the `timeouts` function when we
    /// have no observations.
    default_thresholds: (Duration, Duration),
    /// Number of histogram buckets to use when determining the Xm estimate.
    ///
    /// (See [`History::estimate_xm`] for details.)
    n_modes_for_xm: usize,
    /// How many entries do we record in our success/timeout history?
    success_history_len: usize,
    /// How many timeouts should we allow in our success/timeout history
    /// before we assume that network has changed in a way that makes
    /// our estimates completely wrong?
    reset_after_timeouts: usize,
    /// Minimum base timeout to ever infer or return.
    min_timeout: Duration,
}

impl Default for Params {
    fn default() -> Self {
        Params {
            use_estimates: true,
            min_observations: 100,
            significant_hop: 2,
            timeout_quantile: 0.80,
            abandon_quantile: 0.99,
            default_thresholds: (Duration::from_secs(60), Duration::from_secs(60)),
            n_modes_for_xm: 10,
            success_history_len: SUCCESS_HISTORY_DEFAULT_LEN,
            reset_after_timeouts: 18,
            min_timeout: Duration::from_millis(10),
        }
    }
}

impl From<&NetParameters> for Params {
    fn from(p: &NetParameters) -> Params {
        // Because of the underlying bounds, the "unwrap_or_else"
        // conversions here should be impossible, and the "as"
        // conversions should always be in-range.

        let timeout = p
            .cbt_initial_timeout
            .try_into()
            .unwrap_or_else(|_| Duration::from_secs(60));
        let learning_disabled: bool = p.cbt_learning_disabled.into();
        Params {
            use_estimates: !learning_disabled,
            min_observations: p.cbt_min_circs_for_estimate.get() as u16,
            significant_hop: 2,
            timeout_quantile: p.cbt_timeout_quantile.as_fraction(),
            abandon_quantile: p.cbt_abandon_quantile.as_fraction(),
            default_thresholds: (timeout, timeout),
            n_modes_for_xm: p.cbt_num_xm_modes.get() as usize,
            success_history_len: p.cbt_success_count.get() as usize,
            reset_after_timeouts: p.cbt_max_timeouts.get() as usize,
            min_timeout: p
                .cbt_min_timeout
                .try_into()
                .unwrap_or_else(|_| Duration::from_millis(10)),
        }
    }
}

/// Tor's default circuit build timeout estimator.
///
/// This object records a set of observed circuit build times, and
/// uses it to determine good values for how long we should allow
/// circuits to build.
///
/// For full details of the algorithms used, see
/// [`path-spec.txt`](https://gitlab.torproject.org/tpo/core/torspec/-/blob/master/path-spec.txt).
pub(crate) struct ParetoTimeoutEstimator {
    /// Our observations for circuit build times and success/failure
    /// history.
    history: History,

    /// Our most recent timeout estimate, if we have one that is
    /// up-to-date.
    ///
    /// (We reset this to None whenever we get a new observation.)
    timeouts: Option<(Duration, Duration)>,

    /// The timeouts that we use when we do not have sufficient observations
    /// to conclude anything about our circuit build times.
    ///
    /// These start out as `p.default_thresholds`, but can be adjusted
    /// depending on how many timeouts we've been seeing.
    fallback_timeouts: (Duration, Duration),

    /// A set of parameters to use in computing circuit build timeout
    /// estimates.
    p: Params,
}

impl Default for ParetoTimeoutEstimator {
    fn default() -> Self {
        Self::from_history(History::new_empty())
    }
}

/// An object used to serialize our timeout history for persistent state.
#[derive(Clone, Debug, Serialize, Deserialize, Default)]
#[serde(default)]
pub(crate) struct ParetoTimeoutState {
    /// A version field used to help encoding and decoding.
    #[allow(dead_code)]
    version: usize,
    /// A record of observed timeouts, as returned by `sparse_histogram()`.
    histogram: Vec<(MsecDuration, u16)>,
    /// The current timeout estimate: kept for reference.
    current_timeout: Option<MsecDuration>,

    /// Fields from the state file that was used to make this `ParetoTimeoutState` that
    /// this version of Arti doesn't understand.
    #[serde(flatten)]
    unknown_fields: HashMap<String, JsonValue>,
}

impl ParetoTimeoutState {
    /// Return the latest base timeout estimate, as recorded in this state.
    pub(crate) fn latest_estimate(&self) -> Option<Duration> {
        self.current_timeout
            .map(|m| Duration::from_millis(m.0.into()))
    }
}

impl ParetoTimeoutEstimator {
    /// Construct a new ParetoTimeoutEstimator from the provided history
    /// object.
    fn from_history(history: History) -> Self {
        let p = Params::default();
        ParetoTimeoutEstimator {
            history,
            timeouts: None,
            fallback_timeouts: p.default_thresholds,
            p,
        }
    }

    /// Create a new ParetoTimeoutEstimator based on a loaded
    /// ParetoTimeoutState.
    pub(crate) fn from_state(state: ParetoTimeoutState) -> Self {
        let history = History::from_sparse_histogram(state.histogram.into_iter());
        Self::from_history(history)
    }

    /// Compute an unscaled basic pair of timeouts for a circuit of
    /// the "normal" length.
    ///
    /// Return a cached value if we have no observations since the
    /// last time this function was called.
    fn base_timeouts(&mut self) -> (Duration, Duration) {
        if let Some(x) = self.timeouts {
            // Great; we have a cached value.
            return x;
        }

        if self.history.n_times() < self.p.min_observations as usize {
            // We don't have enough values to estimate.
            return self.fallback_timeouts;
        }

        // Here we're going to compute the timeouts, cache them, and
        // return them.
        let dist = match self.history.pareto_estimate(self.p.n_modes_for_xm) {
            Some(dist) => dist,
            None => {
                return self.fallback_timeouts;
            }
        };
        let timeout_threshold = dist.quantile(self.p.timeout_quantile);
        let abandon_threshold = dist
            .quantile(self.p.abandon_quantile)
            .max(timeout_threshold);

        let timeouts = (
            Duration::from_secs_f64(timeout_threshold / 1000.0).max(self.p.min_timeout),
            Duration::from_secs_f64(abandon_threshold / 1000.0).max(self.p.min_timeout),
        );
        self.timeouts = Some(timeouts);

        timeouts
    }
}

impl super::TimeoutEstimator for ParetoTimeoutEstimator {
    fn update_params(&mut self, p: &NetParameters) {
        let parameters = p.into();
        self.p = parameters;
        let new_success_len = self.p.success_history_len;
        self.history.set_success_history_len(new_success_len);
    }

    fn note_hop_completed(&mut self, hop: u8, delay: Duration, is_last: bool) {
        if hop == self.p.significant_hop {
            let time = MsecDuration::new_saturating(&delay);
            self.history.add_time(time);
            self.timeouts.take();
        }
        if is_last {
            self.history.add_success(true);
        }
    }

    fn note_circ_timeout(&mut self, hop: u8, delay: Duration) {
        // Only record this timeout if we have seen some network activity since
        // we launched the circuit.
        let have_seen_recent_activity =
            if let Some(last_traffic) = tor_proto::time_since_last_incoming_traffic() {
                last_traffic < delay
            } else {
                // TODO: Is this the correct behavior in this case?
                true
            };

        if hop > 0 && have_seen_recent_activity {
            self.history.add_success(false);
            if self.history.n_recent_timeouts() > self.p.reset_after_timeouts {
                let base_timeouts = self.base_timeouts();
                self.history.clear();
                self.timeouts.take();
                // If we already had a timeout that was at least the
                // length of our fallback timeouts, we should double
                // those fallback timeouts.
                if base_timeouts.0 >= self.fallback_timeouts.0 {
                    self.fallback_timeouts.0 *= 2;
                    self.fallback_timeouts.1 *= 2;
                }
            }
        }
    }

    fn timeouts(&mut self, action: &Action) -> (Duration, Duration) {
        let (base_t, base_a) = if self.p.use_estimates {
            self.base_timeouts()
        } else {
            // If we aren't using this estimator, then just return the
            // default thresholds from our parameters.
            return self.p.default_thresholds;
        };

        let reference_action = Action::BuildCircuit {
            length: self.p.significant_hop as usize + 1,
        };
        debug_assert!(reference_action.timeout_scale() > 0);

        let multiplier =
            (action.timeout_scale() as f64) / (reference_action.timeout_scale() as f64);

        // TODO-SPEC The spec doesn't define any of this
        // action-based-multiplier stuff.  Tor doesn't multiply the
        // abandon timeout.
        use super::mul_duration_f64_saturating as mul;
        (mul(base_t, multiplier), mul(base_a, multiplier))
    }

    fn learning_timeouts(&self) -> bool {
        self.p.use_estimates && self.history.n_times() < self.p.min_observations.into()
    }

    fn build_state(&mut self) -> Option<ParetoTimeoutState> {
        let cur_timeout = MsecDuration::new_saturating(&self.base_timeouts().0);
        Some(ParetoTimeoutState {
            version: 1,
            histogram: self.history.sparse_histogram().collect(),
            current_timeout: Some(cur_timeout),
            unknown_fields: Default::default(),
        })
    }
}

#[cfg(test)]
mod test {
    // @@ begin test lint list maintained by maint/add_warning @@
    #![allow(clippy::bool_assert_comparison)]
    #![allow(clippy::clone_on_copy)]
    #![allow(clippy::dbg_macro)]
    #![allow(clippy::print_stderr)]
    #![allow(clippy::print_stdout)]
    #![allow(clippy::single_char_pattern)]
    #![allow(clippy::unwrap_used)]
    #![allow(clippy::unchecked_duration_subtraction)]
    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
    use super::*;
    use crate::timeouts::TimeoutEstimator;
    use tor_basic_utils::test_rng::testing_rng;

    /// Return an action to build a 3-hop circuit.
    fn b3() -> Action {
        Action::BuildCircuit { length: 3 }
    }

    impl From<u32> for MsecDuration {
        fn from(v: u32) -> Self {
            Self(v)
        }
    }

    #[test]
    fn ms_partial_cmp() {
        #![allow(clippy::eq_op)]
        let myriad: MsecDuration = 10_000.into();
        let lakh: MsecDuration = 100_000.into();
        let crore: MsecDuration = 10_000_000.into();

        assert!(myriad < lakh);
        assert!(myriad == myriad);
        assert!(crore > lakh);
        assert!(crore >= crore);
        assert!(crore <= crore);
    }

    #[test]
    fn history_lowlev() {
        assert_eq!(History::bucket_center(1.into()), 5.into());
        assert_eq!(History::bucket_center(903.into()), 905.into());
        assert_eq!(History::bucket_center(0.into()), 5.into());
        assert_eq!(History::bucket_center(u32::MAX.into()), 4294967295.into());

        let mut h = History::new_empty();
        h.inc_bucket(7.into());
        h.inc_bucket(8.into());
        h.inc_bucket(9.into());
        h.inc_bucket(10.into());
        h.inc_bucket(11.into());
        h.inc_bucket(12.into());
        h.inc_bucket(13.into());
        h.inc_bucket(299.into());
        assert_eq!(h.time_histogram.get(&5.into()), Some(&3));
        assert_eq!(h.time_histogram.get(&15.into()), Some(&4));
        assert_eq!(h.time_histogram.get(&25.into()), None);
        assert_eq!(h.time_histogram.get(&295.into()), Some(&1));

        h.dec_bucket(299.into());
        h.dec_bucket(24.into());
        h.dec_bucket(12.into());

        assert_eq!(h.time_histogram.get(&15.into()), Some(&3));
        assert_eq!(h.time_histogram.get(&25.into()), None);
        assert_eq!(h.time_histogram.get(&295.into()), None);

        h.add_success(true);
        h.add_success(false);
        assert_eq!(h.success_history.len(), 2);

        h.clear();
        assert_eq!(h.time_histogram.len(), 0);
        assert_eq!(h.time_history.len(), 0);
        assert_eq!(h.success_history.len(), 0);
    }

    #[test]
    fn time_observation_management() {
        let mut h = History::new_empty();
        h.set_time_history_len(8); // to make it easier to overflow.

        h.add_time(300.into());
        h.add_time(500.into());
        h.add_time(542.into());
        h.add_time(305.into());
        h.add_time(543.into());
        h.add_time(307.into());

        assert_eq!(h.n_times(), 6);
        let v = h.n_most_frequent_bins(10);
        assert_eq!(&v[..], [(305.into(), 3), (545.into(), 2), (505.into(), 1)]);
        let v = h.n_most_frequent_bins(2);
        assert_eq!(&v[..], [(305.into(), 3), (545.into(), 2)]);

        let v: Vec<_> = h.sparse_histogram().collect();
        assert_eq!(&v[..], [(305.into(), 3), (505.into(), 1), (545.into(), 2)]);

        h.add_time(212.into());
        h.add_time(203.into());
        // now we replace the first couple of older elements.
        h.add_time(617.into());
        h.add_time(413.into());

        assert_eq!(h.n_times(), 8);

        let v: Vec<_> = h.sparse_histogram().collect();
        assert_eq!(
            &v[..],
            [
                (205.into(), 1),
                (215.into(), 1),
                (305.into(), 2),
                (415.into(), 1),
                (545.into(), 2),
                (615.into(), 1)
            ]
        );

        let h2 = History::from_sparse_histogram(v.clone().into_iter());
        let v2: Vec<_> = h2.sparse_histogram().collect();
        assert_eq!(v, v2);
    }

    #[test]
    fn success_observation_mechanism() {
        let mut h = History::new_empty();
        h.set_success_history_len(20);

        assert_eq!(h.n_recent_timeouts(), 0);
        h.add_success(true);
        assert_eq!(h.n_recent_timeouts(), 0);
        h.add_success(false);
        assert_eq!(h.n_recent_timeouts(), 1);
        for _ in 0..200 {
            h.add_success(false);
        }
        assert_eq!(h.n_recent_timeouts(), 20);
        h.add_success(true);
        h.add_success(true);
        h.add_success(true);
        assert_eq!(h.n_recent_timeouts(), 20 - 3);

        h.set_success_history_len(10);
        assert_eq!(h.n_recent_timeouts(), 10 - 3);
    }

    #[test]
    fn xm_calculation() {
        let mut h = History::new_empty();
        assert_eq!(h.estimate_xm(2), None);

        for n in &[300, 500, 542, 305, 543, 307, 212, 203, 617, 413] {
            h.add_time(MsecDuration(*n));
        }

        let v = h.n_most_frequent_bins(2);
        assert_eq!(&v[..], [(305.into(), 3), (545.into(), 2)]);
        let est = (305 * 3 + 545 * 2) / 5;
        assert_eq!(h.estimate_xm(2), Some(est));
        assert_eq!(est, 401);
    }

    #[test]
    fn pareto_estimate() {
        let mut h = History::new_empty();
        assert!(h.pareto_estimate(2).is_none());

        for n in &[300, 500, 542, 305, 543, 307, 212, 203, 617, 413] {
            h.add_time(MsecDuration(*n));
        }
        let expected_log_sum: f64 = [401, 500, 542, 401, 543, 401, 401, 401, 617, 413]
            .iter()
            .map(|x| f64::from(*x).ln())
            .sum();
        let expected_log_xm: f64 = (401_f64).ln() * 10.0;
        let expected_alpha = 10.0 / (expected_log_sum - expected_log_xm);
        let expected_inv_alpha = 1.0 / expected_alpha;

        let p = h.pareto_estimate(2).unwrap();

        // We can't do "eq" with floats, so we'll do "very close".
        assert!((401.0 - p.x_m).abs() < 1.0e-9);
        assert!((expected_inv_alpha - p.inv_alpha).abs() < 1.0e-9);

        let q60 = p.quantile(0.60);
        let q99 = p.quantile(0.99);

        assert!((q60 - 451.127) < 0.001);
        assert!((q99 - 724.841) < 0.001);
    }

    #[test]
    fn pareto_estimate_timeout() {
        let mut est = ParetoTimeoutEstimator::default();

        assert_eq!(
            est.timeouts(&b3()),
            (Duration::from_secs(60), Duration::from_secs(60))
        );
        // Set the parameters up to mimic the situation in
        // `pareto_estimate` above.
        est.p.min_observations = 0;
        est.p.n_modes_for_xm = 2;
        assert_eq!(
            est.timeouts(&b3()),
            (Duration::from_secs(60), Duration::from_secs(60))
        );

        for msec in &[300, 500, 542, 305, 543, 307, 212, 203, 617, 413] {
            let d = Duration::from_millis(*msec);
            est.note_hop_completed(2, d, true);
        }

        let t = est.timeouts(&b3());
        assert_eq!(t.0.as_micros(), 493_169);
        assert_eq!(t.1.as_micros(), 724_841);

        let t2 = est.timeouts(&b3());
        assert_eq!(t2, t);

        let t2 = est.timeouts(&Action::BuildCircuit { length: 4 });
        assert_eq!(t2.0, t.0.mul_f64(10.0 / 6.0));
        assert_eq!(t2.1, t.1.mul_f64(10.0 / 6.0));
    }

    #[test]
    fn pareto_estimate_clear() {
        let mut est = ParetoTimeoutEstimator::default();

        // Set the parameters up to mimic the situation in
        // `pareto_estimate` above.
        let params = NetParameters::from_map(&"cbtmincircs=1 cbtnummodes=2".parse().unwrap());
        est.update_params(&params);

        assert_eq!(est.timeouts(&b3()).0.as_micros(), 60_000_000);
        assert!(est.learning_timeouts());

        for msec in &[300, 500, 542, 305, 543, 307, 212, 203, 617, 413] {
            let d = Duration::from_millis(*msec);
            est.note_hop_completed(2, d, true);
        }
        assert_ne!(est.timeouts(&b3()).0.as_micros(), 60_000_000);
        assert!(!est.learning_timeouts());
        assert_eq!(est.history.n_recent_timeouts(), 0);

        // 17 timeouts happen and we're still getting real numbers...
        for _ in 0..18 {
            est.note_circ_timeout(2, Duration::from_secs(2000));
        }
        assert_ne!(est.timeouts(&b3()).0.as_micros(), 60_000_000);

        // ... but 18 means "reset".
        est.note_circ_timeout(2, Duration::from_secs(2000));
        assert_eq!(est.timeouts(&b3()).0.as_micros(), 60_000_000);

        // And if we fail 18 bunch more times, it doubles.
        for _ in 0..20 {
            est.note_circ_timeout(2, Duration::from_secs(2000));
        }
        assert_eq!(est.timeouts(&b3()).0.as_micros(), 120_000_000);
    }

    #[test]
    fn default_params() {
        let p1 = Params::default();
        let p2 = Params::from(&tor_netdir::params::NetParameters::default());
        // discount version of derive(eq)
        assert_eq!(format!("{:?}", p1), format!("{:?}", p2));
    }

    #[test]
    fn state_conversion() {
        // We have tests elsewhere for converting to and from
        // histograms, so all we really need to ddo here is make sure
        // that the histogram conversion happens.

        use rand::Rng;
        let mut est = ParetoTimeoutEstimator::default();
        let mut rng = testing_rng();
        for _ in 0..1000 {
            let d = Duration::from_millis(rng.gen_range(10..3_000));
            est.note_hop_completed(2, d, true);
        }

        let state = est.build_state().unwrap();
        assert_eq!(state.version, 1);
        assert!(state.current_timeout.is_some());

        let mut est2 = ParetoTimeoutEstimator::from_state(state);
        let act = Action::BuildCircuit { length: 3 };
        // This isn't going to be exact, since we're recording histogram bins
        // instead of exact timeouts.
        let ms1 = est.timeouts(&act).0.as_millis() as i32;
        let ms2 = est2.timeouts(&act).0.as_millis() as i32;
        assert!((ms1 - ms2).abs() < 50);
    }

    // TODO: add tests from Tor.
}