tor_basic_utils/rangebounds.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
//! This module exposes helpers for working with types that implement
//! [`RangeBounds`].
use std::cmp::{self, Ord};
use std::ops::{Bound, RangeBounds};
/// An extension trait for [`RangeBounds`].
pub trait RangeBoundsExt<T>: RangeBounds<T> {
/// Compute the intersection of two `RangeBound`s.
///
/// In essence, this computes the intersection of the intervals described by bounds of the
/// two objects.
///
/// Returns `None` if the intersection of the two ranges is the empty set.
fn intersect<'a, U: RangeBounds<T>>(
&'a self,
other: &'a U,
) -> Option<(Bound<&'a T>, Bound<&'a T>)>;
}
impl<T, R> RangeBoundsExt<T> for R
where
R: RangeBounds<T>,
T: Ord,
{
fn intersect<'a, U: RangeBounds<T>>(
&'a self,
other: &'a U,
) -> Option<(Bound<&'a T>, Bound<&'a T>)> {
use Bound::*;
let this_start = self.start_bound();
let other_start = other.start_bound();
let this_end = self.end_bound();
let other_end = other.end_bound();
let start = bounds_max(this_start, other_start);
let end = bounds_min(this_end, other_end);
match (start, end) {
(Excluded(start), Excluded(end)) | (Included(start), Excluded(end)) if start == end => {
// The interval (n, n) = [n, n) = {} (empty set).
None
}
(Included(start), Included(end))
| (Included(start), Excluded(end))
| (Excluded(start), Included(end))
| (Excluded(start), Excluded(end))
if start > end =>
{
// For any a > b, the intervals [a, b], [a, b), (a, b], (a, b) are empty.
None
}
_ => Some((start, end)),
}
}
}
/// Return the largest of `b1` and `b2`.
///
/// If one of the bounds is [Unbounded](Bound::Unbounded), the other will be returned.
fn bounds_max<'a, T: Ord>(b1: Bound<&'a T>, b2: Bound<&'a T>) -> Bound<&'a T> {
use Bound::*;
match (b1, b2) {
(Included(b1), Included(b2)) => Included(cmp::max(b1, b2)),
(Excluded(b1), Excluded(b2)) => Excluded(cmp::max(b1, b2)),
(Excluded(b1), Included(b2)) if b1 >= b2 => Excluded(b1),
(Excluded(_), Included(b2)) => Included(b2),
(Included(b1), Excluded(b2)) if b2 >= b1 => Excluded(b2),
(Included(b1), Excluded(_)) => Included(b1),
(b, Unbounded) | (Unbounded, b) => b,
}
}
/// Return the smallest of `b1` and `b2`.
///
/// If one of the bounds is [Unbounded](Bound::Unbounded), the other will be returned.
fn bounds_min<'a, T: Ord>(b1: Bound<&'a T>, b2: Bound<&'a T>) -> Bound<&'a T> {
use Bound::*;
match (b1, b2) {
(Included(b1), Included(b2)) => Included(cmp::min(b1, b2)),
(Excluded(b1), Excluded(b2)) => Excluded(cmp::min(b1, b2)),
(Excluded(b1), Included(b2)) if b1 <= b2 => Excluded(b1),
(Excluded(_), Included(b2)) => Included(b2),
(Included(b1), Excluded(b2)) if b2 <= b1 => Excluded(b2),
(Included(b1), Excluded(_)) => Included(b1),
(b, Unbounded) | (Unbounded, b) => b,
}
}
#[cfg(test)]
mod test {
// @@ begin test lint list maintained by maint/add_warning @@
#![allow(clippy::bool_assert_comparison)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::dbg_macro)]
#![allow(clippy::mixed_attributes_style)]
#![allow(clippy::print_stderr)]
#![allow(clippy::print_stdout)]
#![allow(clippy::single_char_pattern)]
#![allow(clippy::unwrap_used)]
#![allow(clippy::unchecked_duration_subtraction)]
#![allow(clippy::useless_vec)]
#![allow(clippy::needless_pass_by_value)]
//! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
use super::*;
use std::fmt::Debug;
use std::time::{Duration, SystemTime};
use Bound::{Excluded as Excl, Included as Incl, Unbounded};
/// A helper that computes the intersection of `range1` and `range2`.
///
/// This function also asserts that the intersection operation is commutative.
fn intersect<'a, T, R: RangeBounds<T>>(
range1: &'a R,
range2: &'a R,
) -> Option<(Bound<&'a T>, Bound<&'a T>)>
where
T: PartialEq + Ord + Debug,
{
let intersection1 = range1.intersect(range2);
let intersection2 = range2.intersect(range1);
assert_eq!(intersection1, intersection2);
intersection1
}
/// A helper for randomly generating either an inclusive or an exclusive bound with a
/// particular value.
fn random_bound<T>(value: T) -> Bound<T> {
if rand::random() {
Bound::Included(value)
} else {
Bound::Excluded(value)
}
}
#[test]
fn no_overlap() {
#[allow(clippy::type_complexity)]
const NON_OVERLAPPING_RANGES: &[(
(Bound<usize>, Bound<usize>),
(Bound<usize>, Bound<usize>),
)] = &[
// (1, 2) and (3, 4)
((Excl(1), Excl(2)), (Excl(3), Excl(4))),
// (1, 2) and (2, 3)
((Excl(1), Excl(2)), (Excl(2), Excl(3))),
// (1, 2) and [2, 3)
((Excl(1), Excl(2)), (Incl(2), Excl(3))),
// (1, 2) and [2, 3]
((Excl(1), Excl(2)), (Incl(3), Incl(4))),
// (-inf, 2) and [2, 3]
((Unbounded, Excl(2)), (Incl(2), Incl(3))),
// (-inf, 2) and (2, inf)
((Unbounded, Excl(2)), (Excl(2), Unbounded)),
// (-inf, 2) and [2, inf)
((Unbounded, Excl(2)), (Incl(2), Unbounded)),
];
for (range1, range2) in NON_OVERLAPPING_RANGES {
let intersection = intersect(range1, range2);
assert!(
intersection.is_none(),
"{:?} and {:?} => {:?}",
range1,
range2,
intersection
);
}
}
#[test]
fn intersect_unbounded_start() {
// (-inf, 3)
let range1 = (Unbounded, Excl(3));
// [2, 5]
let range2 = (Incl(2), Incl(5));
let intersection = intersect(&range1, &range2).unwrap();
// intersection = [2 3]
assert_eq!(intersection.start_bound(), Bound::Included(&2));
assert_eq!(intersection.end_bound(), Bound::Excluded(&3));
}
#[test]
fn intersect_unbounded_end() {
// (8, inf)
let range1 = (Excl(8), Unbounded);
// [8, 20]
let range2 = (Incl(8), Incl(20));
let intersection = intersect(&range1, &range2).unwrap();
// intersection = (8, 20]
assert_eq!(intersection.start_bound(), Bound::Excluded(&8));
assert_eq!(intersection.end_bound(), Bound::Included(&20));
}
#[test]
fn intersect_unbounded_range() {
#[allow(clippy::type_complexity)]
const RANGES: &[(Bound<usize>, Bound<usize>)] = &[
// (1, 2)
(Excl(1), Excl(2)),
// (1, 2]
(Excl(1), Incl(2)),
// [1, 2]
(Incl(1), Incl(2)),
// [1, 2)
(Incl(1), Excl(2)),
// (1, inf)
(Excl(1), Unbounded),
// [1, inf)
(Incl(1), Unbounded),
// (-inf, 2)
(Unbounded, Excl(2)),
// (-inf, 2]
(Unbounded, Incl(2)),
];
// The intersection of any interval I with (Unbounded, Unbounded) will be I.
let range1 = (Unbounded, Unbounded);
for range2 in RANGES {
let range2 = (range2.0.as_ref(), range2.1.as_ref());
assert_eq!(intersect(&range1, &range2).unwrap(), range2);
}
}
#[test]
fn intersect_time_bounds() {
const MIN: Duration = Duration::from_secs(60);
// time (relative to now): 0 1 2 3
// | | | |
// [t1, t2]: [.......]
// [t3, t4]: [.......]
// intersection: [...]
let now = SystemTime::now();
let t1 = now;
let t2 = now + 2 * MIN;
let t3 = now + 1 * MIN;
let t4 = now + 3 * MIN;
let b1 = (Bound::Included(t1), Bound::Included(t2));
let b2 = (Bound::Included(t3), Bound::Included(t4));
let expected = (Bound::Included(&t3), Bound::Included(&t2));
assert_eq!(intersect(&b1, &b2).unwrap(), expected);
// t1 - - t2 - -
// t3 - - t4
//
// time (relative to now): 0 1 2 3 4 5 6 7
// | | | | | | | |
// [t1, t2]: [.......]
// [t3, t4]: [............]
let t3 = now + 4 * MIN;
let t4 = now + 7 * MIN;
let b2 = (Bound::Included(t3), Bound::Included(t4));
assert!(intersect(&b1, &b2).is_none());
}
#[test]
fn combinatorial() {
for i in 0..10 {
for j in 0..10 {
for k in 0..10 {
for l in 0..10 {
let range1 = (random_bound(i), random_bound(j));
let range2 = (random_bound(k), random_bound(l));
let intersection = intersect(&range1, &range2);
for witness in 0..10 {
let c1 = range1.contains(&witness);
let c2 = range2.contains(&witness);
let both_contain_witness = c1 && c2;
if both_contain_witness {
// If both ranges contain `witness` they definitely intersect.
assert!(intersection.unwrap().contains(&witness));
} else if let Some(intersection) = intersection {
// If one of them doesn't contain `witness`, `witness` is
// definitely not part of the intersection.
assert!(!intersection.contains(&witness));
}
}
}
}
}
}
}
}