tor_basic_utils/
byte_qty.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
//! `ByteQty`, Quantity of memory used, measured in bytes.
//
// The closest crate to this on crates.io is `bytesize`.
// But it has serious bugs including confusion about KiB vs KB,
// and isn't maintained.
//
// There is also humansize, but that just does printing.

#![allow(clippy::comparison_to_empty)] // unit == "" etc. is much clearer

use derive_more::{Deref, DerefMut, From, Into};
use itertools::Itertools;
use thiserror::Error;

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use std::fmt::{self, Display};
use std::str::FromStr;

use InvalidByteQty as IBQ;

/// Quantity of memory used, measured in bytes.
///
/// Like `usize` but `FromStr` and `Display`s in a more friendly and less precise way
///
/// Parses from (with or without the internal space):
///  * `<amount>` (implicitly, bytes)
///  * `<amount> B`
///  * `<amount> KiB`/`MiB`/`GiB`/`TiB` (binary, 1024-based units)
///  * `<amount> KB`/`MB`/`GB`/`TB` (decimal, 1000-based units)
///
/// Displays to approximately 3 significant figures,
/// preferring binary (1024-based) multipliers.
/// (There is no facility for adjusting the format.)
#[derive(Debug, Clone, Copy, Hash, Default, Eq, PartialEq, Ord, PartialOrd)] //
#[derive(From, Into, Deref, DerefMut)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(into = "usize", try_from = "ByteQtySerde")
)]
#[allow(clippy::exhaustive_structs)] // this is a behavioural newtype wrapper
pub struct ByteQty(pub usize);

/// Error parsing (or deserialising) a [`ByteQty`]
#[derive(Error, Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum InvalidByteQty {
    /// Value bigger than `usize::MAX`
    #[error(
        "size/quantity outside range supported on this system (max is {} B)",
        usize::MAX
    )]
    Overflow,
    /// Unknown unit
    #[error(
        "size/quantity specified unknown unit; supported are {}",
        SupportedUnits
    )]
    UnknownUnit,
    /// Unknown unit, probably because the B at the end was missing
    ///
    /// We insist on the `B` so that all our units end in `B` or `iB`.
    #[error(
        "size/quantity specified unknown unit - we require the `B`; supported units are {}",
        SupportedUnits
    )]
    UnknownUnitMissingB,
    /// Bad syntax
    #[error("size/quantity specified string in bad syntax")]
    BadSyntax,
    /// Negative value
    #[error("size/quantity cannot be negative")]
    Negative,
    /// NaN
    #[error("size/quantity cannot be obtained from a floating point NaN")]
    NaN,
    /// BadValue
    #[error("bad type for size/quantity (only numbers, and strings to parse, are supported)")]
    BadValue,
}

//---------- units (definitions) ----------

/// Units that can be suffixed to a number, when displaying [`ByteQty`] (macro)
const DISPLAY_UNITS: &[(&str, u64)] = &[
    ("B", 1),
    ("KiB", 1024),
    ("MiB", 1024 * 1024),
    ("GiB", 1024 * 1024 * 1024),
    ("TiB", 1024 * 1024 * 1024 * 1024),
];

/// Units that are (only) recognised parsing a [`ByteQty`] from a string
const PARSE_UNITS: &[(&str, u64)] = &[
    ("", 1),
    ("KB", 1000),
    ("MB", 1000 * 1000),
    ("GB", 1000 * 1000 * 1000),
    ("TB", 1000 * 1000 * 1000 * 1000),
];

/// Units that are used when parsing *and* when printing
const ALL_UNITS: &[&[(&str, u64)]] = &[
    //
    DISPLAY_UNITS,
    PARSE_UNITS,
];

//---------- inherent methods ----------

impl ByteQty {
    /// Maximum for the type
    pub const MAX: ByteQty = ByteQty(usize::MAX);

    /// Return the value as a plain number, a `usize`
    ///
    /// Provided so call sites don't need to write an opaque `.0` everywhere,
    /// even though that would be fine.
    pub const fn as_usize(self) -> usize {
        self.0
    }
}

//---------- printing ----------

impl Display for ByteQty {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let v = self.0 as f64;

        // Find the first entry which is big enough that the mantissa will be <999.5,
        // ie where it won't print as 4 decimal digits after the point.
        // Or, if that doesn't work, we'll use the last entry which is the largest.

        let (unit, mantissa) = DISPLAY_UNITS
            .iter()
            .copied()
            .filter(|(unit, _)| *unit != "")
            .map(|(unit, multiplier)| (unit, v / multiplier as f64))
            .find_or_last(|(_, mantissa)| *mantissa < 999.5)
            .expect("DISPLAY_UNITS Is empty?!");

        // Select a precision so that we'll print about 3 significant figures.
        // We can't do this precisely, so we err on the side of slightly
        // fewer SF with mantissae starting with 9.

        let after_decimal = if mantissa < 9. {
            2
        } else if mantissa < 99. {
            1
        } else {
            0
        };

        write!(f, "{mantissa:.*} {unit}", after_decimal)
    }
}

//---------- incoming conversions ----------

// We don't provide Into<u64> or Into<f64> because they're actually quite faffsome
// due to all the corner cases.  We only provide these two, because we need them
// ourselves for parsing and deserialisation.

impl TryFrom<u64> for ByteQty {
    type Error = InvalidByteQty;
    fn try_from(v: u64) -> Result<ByteQty, IBQ> {
        let v = v.try_into().map_err(|_| IBQ::Overflow)?;
        Ok(ByteQty(v))
    }
}

impl TryFrom<f64> for ByteQty {
    type Error = InvalidByteQty;
    fn try_from(f: f64) -> Result<ByteQty, IBQ> {
        if f.is_nan() {
            Err(IBQ::NaN)
        } else if f > (usize::MAX as f64) {
            Err(IBQ::Overflow)
        } else if f >= 0. {
            Ok(ByteQty(f as usize))
        } else {
            Err(IBQ::Negative)
        }
    }
}

/// Helper for deserializing [`ByteQty`]
#[cfg(feature = "serde")]
#[derive(Deserialize)]
#[serde(untagged)]
enum ByteQtySerde {
    /// `String`
    U(u64),
    /// `String`
    S(String),
    /// `f64`
    F(f64),
    /// Other things
    Bad(serde::de::IgnoredAny),
}
#[cfg(feature = "serde")]
impl TryFrom<ByteQtySerde> for ByteQty {
    type Error = InvalidByteQty;
    fn try_from(qs: ByteQtySerde) -> Result<ByteQty, IBQ> {
        match qs {
            ByteQtySerde::S(s) => s.parse(),
            ByteQtySerde::U(u) => u.try_into(),
            ByteQtySerde::F(f) => f.try_into(),
            ByteQtySerde::Bad(_) => Err(IBQ::BadValue),
        }
    }
}

//---------- FromStr ----------

impl FromStr for ByteQty {
    type Err = InvalidByteQty;
    fn from_str(s: &str) -> Result<Self, IBQ> {
        let s = s.trim();

        let last_digit = s
            .rfind(|c: char| c.is_ascii_digit())
            .ok_or(IBQ::BadSyntax)?;

        // last_digit points to an ASCII digit so +1 is right to skip it
        let (mantissa, unit) = s.split_at(last_digit + 1);

        let unit = unit.trim_start(); // remove any whitespace in the middle

        // defer unknown unit errors until we've done the rest of the parsing
        let multiplier: Result<u64, _> = ALL_UNITS
            .iter()
            .copied()
            .flatten()
            .find(|(s, _)| *s == unit)
            .map(|(_, m)| *m)
            .ok_or_else(|| {
                if unit.ends_with('B') {
                    IBQ::UnknownUnit
                } else {
                    IBQ::UnknownUnitMissingB
                }
            });

        // We try this via u64 (so we give byte-precise answers if possible)
        // and via f64 (so we can support fractions).
        //
        // (Byte-precise amounts aren't important here in tor-memquota,
        // but this code seems like it may end up elsewhere.)
        if let Ok::<u64, _>(mantissa) = mantissa.parse() {
            let multiplier = multiplier?;
            (|| {
                mantissa
                    .checked_mul(multiplier)? //
                    .try_into()
                    .ok()
            })()
            .ok_or(IBQ::Overflow)
        } else if let Ok::<f64, _>(mantissa) = mantissa.parse() {
            let value = mantissa * (multiplier? as f64);
            value.try_into()
        } else {
            Err(IBQ::BadSyntax)
        }
    }
}

/// Helper to format the list of supported units into `IBQ::UnknownUnit`
struct SupportedUnits;

impl Display for SupportedUnits {
    #[allow(unstable_name_collisions)] // Itertools::intersperse vs std's;  rust-lang/rust#48919
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for s in ALL_UNITS
            .iter()
            .copied()
            .flatten()
            .copied()
            .map(|(unit, _multiplier)| unit)
            .filter(|unit| !unit.is_empty())
            .intersperse("/")
        {
            Display::fmt(s, f)?;
        }
        Ok(())
    }
}

#[cfg(test)]
mod test {
    // @@ begin test lint list maintained by maint/add_warning @@
    #![allow(clippy::bool_assert_comparison)]
    #![allow(clippy::clone_on_copy)]
    #![allow(clippy::dbg_macro)]
    #![allow(clippy::mixed_attributes_style)]
    #![allow(clippy::print_stderr)]
    #![allow(clippy::print_stdout)]
    #![allow(clippy::single_char_pattern)]
    #![allow(clippy::unwrap_used)]
    #![allow(clippy::unchecked_duration_subtraction)]
    #![allow(clippy::useless_vec)]
    #![allow(clippy::needless_pass_by_value)]
    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->

    use super::*;

    #[test]
    fn display_qty() {
        let chk = |by, s: &str| {
            assert_eq!(ByteQty(by).to_string(), s, "{s:?}");
            assert_eq!(s.parse::<ByteQty>().expect(s).to_string(), s, "{s:?}");
        };

        chk(10 * 1024, "10.0 KiB");
        chk(1024 * 1024, "1.00 MiB");
        chk(1000 * 1024 * 1024, "0.98 GiB");
    }

    #[test]
    fn parse_qty() {
        let chk = |s: &str, b| assert_eq!(s.parse::<ByteQty>(), b, "{s:?}");
        let chk_y = |s, v| chk(s, Ok(ByteQty(v)));

        chk_y("1", 1);
        chk_y("1B", 1);
        chk_y("1KB", 1000);
        chk_y("1 KB", 1000);
        chk_y("1 KiB", 1024);
        chk_y("1.0 KiB", 1024);
        chk_y(".00195312499909050529 TiB", 2147483647);

        chk("1 2 K", Err(IBQ::BadSyntax));
        chk("1.2 K", Err(IBQ::UnknownUnitMissingB));
        chk("no digits", Err(IBQ::BadSyntax));
        chk("1 2 KB", Err(IBQ::BadSyntax));
        chk("1 mB", Err(IBQ::UnknownUnit));
        chk("1.0e100 TiB", Err(IBQ::Overflow));
    }

    #[test]
    fn convert() {
        fn chk(a: impl TryInto<ByteQty, Error = IBQ>, b: Result<ByteQty, IBQ>) {
            assert_eq!(a.try_into(), b);
        }
        fn chk_y(a: impl TryInto<ByteQty, Error = IBQ>, v: usize) {
            chk(a, Ok(ByteQty(v)));
        }

        chk_y(0.0_f64, 0);
        chk_y(1.0_f64, 1);
        chk_y(f64::from(u32::MAX), u32::MAX as usize);
        chk_y(-0.0_f64, 0);

        chk(-0.01_f64, Err(IBQ::Negative));
        chk(1.0e100_f64, Err(IBQ::Overflow));
        chk(f64::NAN, Err(IBQ::NaN));

        chk_y(0_u64, 0);
        chk_y(u64::from(u32::MAX), u32::MAX as usize);
        // we can't easily test the u64 overflow case without getting arch-specific
    }

    #[cfg(feature = "serde")]
    #[test]
    fn serde_deser() {
        // Use serde__value so we can try all the exciting things in the serde model
        use serde_value::Value as SV;

        let chk = |sv: SV, b: Result<ByteQty, IBQ>| {
            assert_eq!(
                sv.clone().deserialize_into().map_err(|e| e.to_string()),
                b.map_err(|e| e.to_string()),
                "{sv:?}",
            );
        };
        let chk_y = |sv, v| chk(sv, Ok(ByteQty(v)));
        let chk_bv = |sv| chk(sv, Err(IBQ::BadValue));

        chk_y(SV::U8(1), 1);
        chk_y(SV::String("1".to_owned()), 1);
        chk_y(SV::String("1 KiB".to_owned()), 1024);
        chk_y(SV::I32(i32::MAX), i32::MAX as usize);
        chk_y(SV::F32(1.0), 1);
        chk_y(SV::F64(f64::from(u32::MAX)), u32::MAX as usize);
        chk_y(SV::Bytes("1".to_string().into()), 1);

        chk_bv(SV::Bool(false));
        chk_bv(SV::Char('1'));
        chk_bv(SV::Unit);
        chk_bv(SV::Option(None));
        chk_bv(SV::Option(Some(Box::new(SV::String("1".to_owned())))));
        chk_bv(SV::Newtype(Box::new(SV::String("1".to_owned()))));
        chk_bv(SV::Seq(vec![]));
        chk_bv(SV::Map(Default::default()));
    }

    #[cfg(feature = "serde")]
    #[test]
    fn serde_ser() {
        // Use serde_json so we don't have to worry about how precisely
        // serde decides to encode a usize (eg is it u32 or u64 or what).
        assert_eq!(
            serde_json::to_value(ByteQty(1)).unwrap(),
            serde_json::json!(1),
        );
    }
}