1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
use std::cmp::Ordering;
use std::fmt::{Debug, Formatter};
use std::mem;
use crate::TopSet;

impl<X,C> TopSet<X,C>
    where C: FnMut(&X,&X) -> bool
{
    /// Creates a new top set with a selecting closure.
    pub fn new(n: usize, beat: C) -> Self
    {
        assert!(n > 0);
        Self {
            heap: Vec::with_capacity(n),
            count: n,
            beat
        }
    }

    /// Creates a new top set with a selecting closure and an initial set of items.
    ///
    /// If the initial set contains more than `n` elements, only the `n` greatest ones
    /// (according to `beat` selector) are stored.
    pub fn with_init<I: IntoIterator<Item=X>>(n: usize, init: I, beat: C) -> Self
    {
        assert!(n > 0);
        let mut top = Self::new(n, beat);
        top.extend(init);
        top
    }

    /// Check if the top set is empty
    #[inline]
    pub fn is_empty(&self) -> bool { self.heap.is_empty() }

    /// Get the number of stored items.
    ///
    /// It never exceeds the predefined capacity.
    #[inline]
    pub fn len(&self) -> usize { self.heap.len() }

    /// Get the capacity of this top set
    ///
    /// This capacity could only change by calling [`resize`].
    #[inline]
    pub fn capacity(&self) -> usize { self.count }

    /// Read access to the lowest item of the top set
    ///
    /// Notice that it actually returned the _lowest_ one and
    /// so all the others are better (or equal) this one.
    #[inline]
    pub fn peek(&self) -> Option<&X>
    {
        self.heap.first()
    }

    /// Iterate over all the top selected items.
    ///
    /// The iterator is **not** sorted. A sorted iteration
    /// could be obtained by iterative call to [`Self::pop`]
    /// or by using [`Self::into_iter_sorted`].
    ///
    #[inline]
    pub fn iter(&self) -> impl Iterator<Item=&X>
    {
        self.heap.iter()
    }

    /// Gets all the top set elements in a vector.
    ///
    /// This vector is **not** sorted.
    /// See [`Self::into_sorted_vec`] if a sorted result is expected.
    #[inline]
    pub fn into_vec(self) -> Vec<X> { self.heap }

    /// Insert a new item.
    ///
    /// If the top set is not filled, the item is simply added and `None` is returned.
    ///
    /// If there is no more room, then one item should be rejected:
    /// * if the new item is better than some already stored ones, it is added
    /// and the removed item is returned
    /// * if the new item is worse than all the stored ones, it is returned
    pub fn insert(&mut self, mut x: X) -> Option<X>
    {
        if self.heap.len() < self.count {
            // some room left
            self.heap.push(x);
            self.percolate_up(self.heap.len()-1);
            None

        } else {
            if (self.beat)(&x, &self.heap[0]) {
                // put the greatest the deepest: the new one should be kept
                mem::swap(&mut x, &mut self.heap[0]);
                self.percolate_down(0);
            }
            Some(x)
        }
    }

    /// Converts this topset into a sorted iterator
    ///
    /// Notice that the _lowest_ item of the top set is the
    /// first one. The _greatest_ item is the last one.
    #[inline]
    pub fn into_iter_sorted(self) -> crate::iter::IntoIterSorted<X,C> {
        self.into()
    }

    /// Returns the topset in a sorted vector.
    ///
    /// The first element of the vector is the _lowest_ item of the top set
    /// and the last one is the _greatest_ one.
    pub fn into_sorted_vec(mut self) -> Vec<X>
        where X:PartialEq
    {
        self.heap.sort_unstable_by(|a,b| {
            if *a == *b {
                Ordering::Equal
            } else if (self.beat)(a,b) {
                Ordering::Greater
            } else {
                Ordering::Less
            }
        });
        self.heap
    }

    /// Resize the top set
    ///
    /// If the size decreases, then the lowest items are removed.
    /// If the size increases, nothing else happens but there is still more room
    /// for next insertions.
    pub fn resize(&mut self, n: usize)
    {
        if self.count < n {
            self.heap.reserve(n - self.count);
        } else {
            while self.heap.len() > n {
                self.pop();
            }
        }
        self.count = n;
    }

    /// Pop the lowest item of the top set
    ///
    /// Remove and return the _lowest_ item of the top set.
    /// After this call, there is one more room for a item.
    ///
    /// This method is the only way to get the top elements
    /// in a sorted way (from the lowest to the best).
    pub fn pop(&mut self) -> Option<X>
    {
        match self.heap.len() {
            0 => None,
            1|2 => Some(self.heap.swap_remove(0)),
            _ => {
                let pop = self.heap.swap_remove(0);
                self.percolate_down(0);
                Some(pop)
            }
        }
    }

    // internal stuff
    // move i up (to the best)
    fn percolate_up(&mut self, mut i: usize)
    {
        while i > 0 { // so has a parent (not root)
            let parent = (i-1)/2;
            // put the greatest the deepest
            if (self.beat)(&self.heap[parent], &self.heap[i]) {
                self.heap.swap(parent, i);
                i = parent;
            } else {
                break;
            }
        }
    }

    // internal stuff
    // move i as deep as possible
    fn percolate_down(&mut self, mut i: usize)
    {
        loop {
            let mut child = 2*i+1;
            if child < self.heap.len()-1 {
                // to put the greatest the deepest -> select the greatest child
                if (self.beat)(&self.heap[child], &self.heap[child+1]) {
                    child += 1;
                }
                // put the greatest the deepest
                if (self.beat)(&self.heap[i], &self.heap[child]) {
                    self.heap.swap(i, child);
                    i = child;
                } else {
                    break;
                }
            } else {
                if (child == self.heap.len() - 1) && (self.beat)(&self.heap[i], &self.heap[child]) {
                    // only one child
                    self.heap.swap(i, child);
                }
                // end of heap
                break;
            }
        }
    }
}


impl<X,C> IntoIterator for TopSet<X,C>
    where C: FnMut(&X,&X) -> bool
{
    type Item = X;
    type IntoIter = <Vec<X> as IntoIterator>::IntoIter;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        self.heap.into_iter()
    }
}

impl<'a,X,C> IntoIterator for &'a TopSet<X,C>
    where C: FnMut(&X,&X) -> bool
{
    type Item = &'a X;
    type IntoIter = <&'a Vec<X> as IntoIterator>::IntoIter;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        (&self.heap).into_iter()
    }
}

impl<X,C> Extend<X> for TopSet<X,C>
    where C: FnMut(&X,&X) -> bool
{
    #[inline]
    fn extend<T: IntoIterator<Item=X>>(&mut self, iter: T) {
        iter.into_iter().for_each(|x| { self.insert(x); } )
    }
}


impl<X,C> Debug for TopSet<X,C>
    where X:Debug, C: FnMut(&X,&X) -> bool
{
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        self.heap.fmt(f)
    }
}



#[cfg(test)]
mod tests {
    use crate::iter::TopSetReducing;
    use crate::TopSet;

    #[test]
    fn lowest_cost()
    {
        let mut top = TopSet::<f32,_>::new(5, f32::lt);
        top.extend(vec![81.5, 4.5, 4., 1., 45., 22., 11.]);
        top.extend(vec![81.5, 4.5, 4., 1., 45., 22., 11.]);

        assert_eq![ top.pop(), Some(4.5) ];
        assert_eq![ top.pop(), Some(4.) ];
        assert_eq![ top.pop(), Some(4.) ];
        assert_eq![ top.pop(), Some(1.) ];
        assert_eq![ top.pop(), Some(1.) ];
        assert_eq![ top.pop(), None ];
    }

    #[test]
    fn greatest_score()
    {
        assert_eq![
            vec![81,5, 4,5,4,1,45,22,1,5,97,5,877,12,0]
            .into_iter()
            .topset(5, u32::gt)
            .into_iter()
            .last(),
            Some(877)];
    }

    /*    fn top()
    {
        let items = vec![4, 5, 9, 2, 3, 8, 4, 7, 8, 1];

        // getting the four greatest integers (repeating allowed)
        items.clone().into_iter()
            .topset(4, i32::gt)
            .into_iter_sorted()
            .for_each(|x| eprintln!("in the top 4: {}", x));

        let mut i =  items.clone().into_iter()
            .topset(4, i32::gt);
        eprintln!("in the top 4: {:?}", i.pop());
        eprintln!("in the top 4: {:?}", i.pop());
        eprintln!("in the top 4: {:?}", i.pop());
        eprintln!("in the top 4: {:?}", i.pop());
        eprintln!("in the top 4: {:?}", i.pop());
        eprintln!("in the top 4: {:?}", i.pop());
        eprintln!("in the top 4: {:?}", i.pop());

        // getting the four smallest integers
        // (we just need to reverse the comparison function)
        items.into_iter()
            .topset(4, i32::lt)
            .into_iter_sorted()
            .for_each(|x| eprintln!("in the last 4: {}", x));
    }*/
}