1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
//! A module that contains the logic for the 2048 game.
// std imports
use std::fmt::{self, Display, Formatter, Write};
use std::sync::{Arc, Mutex};
// external imports
use rand::seq::IteratorRandom;
use rand::{random, thread_rng};
use tinypool::ThreadPool;
// internal imports
use crate::error::Error;
/// An enum that represents the moves that can be made in the game of 2048.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum GameMove {
Left,
Right,
Up,
Down,
}
impl GameMove {
/// Returns the index of the move.
/// Used internally for indexing arrays.
/// # Returns
/// * ```usize``` - The index of the move.
fn index(&self) -> usize {
match self {
Self::Left => 0,
Self::Right => 1,
Self::Up => 2,
Self::Down => 3,
}
}
/// Returns the move from the index.
/// Used internally for indexing arrays.
/// # Arguments
/// * ```index``` - The index of the move.
/// # Returns
/// * ```GameMove``` - The move.
fn from_index(index: usize) -> Self {
match index {
0 => Self::Left,
1 => Self::Right,
2 => Self::Up,
3 => Self::Down,
_ => panic!("Invalid index: {}", index),
}
}
}
/// An enum that represents the possible states of the 2048 game.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum GameState {
/// The game is in progress.
InProgress,
/// The game is over. Result is either victory or loss.
GameOver,
}
/// An enum that represents the possible results of the 2048 game.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum GameResult {
/// The result is not yet determined.
Pending,
/// The game is won, 2048 was reached.
Victory,
/// The game is over, 2048 was not reached, there are no valid moves left.
Loss,
}
#[derive(Debug)]
/// A struct that represents the 2048 game.
pub struct Game<const SIZE: usize> {
/// Game tiles.
board: [[u64; SIZE]; SIZE],
/// Game score.
score: u64,
/// Additional score for each move.
score_next: [u64; 4],
/// Availability of moves.
moves: [bool; 4],
/// Board after each of the moves.
moves_next: [[[u64; SIZE]; SIZE]; 4],
/// The state of the game.
state: GameState,
/// The result of the game.
result: GameResult,
}
impl<const SIZE: usize> Game<SIZE> {
/// Creates a new game of 2048.
/// # Returns
/// * ```Ok(Game)```: The game was created successfully.
/// * ```Err(Error)```: The game was not created successfully.
/// # Errors
/// * ```Error::InvalidSize```: The SIZE is invalid. Must be at least 4.
pub fn new() -> Result<Self, Error> {
if SIZE < 4 {
return Err(Error::InvalidSize);
}
let board = [[0; SIZE]; SIZE];
let score = 0;
let score_next = [0; 4];
let moves = [true; 4];
let moves_next = [[[0; SIZE]; SIZE]; 4];
let state = GameState::InProgress;
let result = GameResult::Pending;
let mut game_object: Self = Self {
board,
score,
score_next,
moves,
moves_next,
state,
result,
};
game_object.new_tile();
game_object.update();
Ok(game_object)
}
/// Creates a game of 2048 from an existing board.
/// The board must be a square matrix filled with 0 for empty tiles and powers of 2 for filled tiles.
/// # Arguments
/// * ```board```: The board to use.
/// * ```score```: The score of the game.
/// # Returns
/// * ```Ok(Game)```: The game was created successfully.
/// * ```Err(Error)```: The game was not created successfully.
/// # Errors
/// * ```Error::InvalidSize```: The SIZE is invalid. Must be at least 4.
/// * ```Error::InvalidValue```: The board contains invalid value. Must be 0 or a power of 2, starting from 2.
pub fn from_existing(board: &[[u64; SIZE]; SIZE], score: u64) -> Result<Self, Error> {
if SIZE < 4 {
return Err(Error::InvalidSize);
}
for row in board.iter() {
for tile in row.iter() {
if *tile == 1 || (*tile != 0 && !tile.is_power_of_two()) {
return Err(Error::InvalidValue);
}
}
}
let board = *board;
let score_next = [0; 4];
let moves = [true; 4];
let moves_next = [[[0; SIZE]; SIZE]; 4];
let state = GameState::InProgress;
let result = GameResult::Pending;
let mut game_object = Self {
board,
score,
score_next,
moves,
moves_next,
state,
result,
};
game_object.update();
Ok(game_object)
}
/// Returns the reference to the board.
/// The board is a square matrix filled with 0 for empty tiles and powers of 2 for filled tiles.
/// # Returns
/// * ```&[[u64; SIZE]; SIZE]```: The board.
pub fn board(&self) -> &[[u64; SIZE]; SIZE] {
&self.board
}
/// Returns the result of the game.
/// # Returns
/// * ```Result::Victory```: The game is won, 2048 was reached.
/// * ```Result::Pending```: The game is in progress, 2048 is not reached yet.
/// * ```Result::Loss```: The game is over, 2048 was not reached.
pub fn result(&self) -> GameResult {
self.result
}
/// Returns the score of the game.
/// # Returns
/// * ```u64```: The score of the game.
pub fn score(&self) -> u64 {
self.score
}
/// Returns the size of the board.
/// # Returns
/// * ```usize```: The size of the board. The board is ```usize```x```usize```.
pub fn size(&self) -> usize {
SIZE
}
/// Returns the state of the game.
/// # Returns
/// * ```State::InProgress```: The game is in progress.
/// * ```State::GameOver```: The game is over.
pub fn state(&self) -> GameState {
self.state
}
/// Make a move in the game.
/// # Arguments
/// * ```direction```: The direction to move in.
/// # Returns
/// * ```true``` - The move was successful.
/// * ```false``` - The move was invalid/impossible.
pub fn make_move(&mut self, direction: GameMove) -> bool {
let next_ind = direction.index();
if self.moves[next_ind] {
self.board = self.moves_next[next_ind];
self.score += self.score_next[next_ind];
self.new_tile();
self.update();
true
} else {
false
}
}
/// Add a new tile to the board.
fn new_tile(&mut self) {
// create iterator over all tiles (cartesian product of two ranges)
// filter only empty tiles -> get iterator over empty tiles
// choose one of the empty tiles with rng
let loc = (0..SIZE)
.flat_map(|ind1| (0..SIZE).map(move |ind2| (ind1, ind2)))
.filter(|&pos| self.board[pos.0][pos.1] == 0)
.choose(&mut thread_rng())
.unwrap();
// add 2 or 4 to that tile
self.board[loc.0][loc.1] = if random::<f64>() < 0.9 { 2 } else { 4 };
}
/// Update moves, moves_next, score_next, state and result.
fn update(&mut self) {
// update left
self.score_next[0] = 0;
for (i, row) in self.board.iter().enumerate() {
let mut j = 0;
let mut merge = false;
for elem in row.iter().filter(|&&x| x != 0) {
if merge && *elem == self.moves_next[0][i][j - 1] {
self.moves_next[0][i][j - 1] *= 2;
self.score_next[0] += self.moves_next[0][i][j - 1];
merge = false;
} else {
self.moves_next[0][i][j] = *elem;
j += 1;
merge = true;
}
}
for empty_elem in self.moves_next[0][i].iter_mut().skip(j) {
*empty_elem = 0;
}
}
self.moves[0] = self.board != self.moves_next[0];
// update right
self.score_next[1] = 0;
for (i, row) in self.board.iter().enumerate() {
let mut j = SIZE - 1;
let mut merge = false;
let mut negative_index = false;
for elem in row.iter().filter(|&&x| x != 0).rev() {
if merge && *elem == self.moves_next[1][i][j + 1] {
self.moves_next[1][i][j + 1] *= 2;
self.score_next[1] += self.moves_next[1][i][j + 1];
merge = false;
} else {
self.moves_next[1][i][j] = *elem;
j = match j.checked_sub(1) {
Some(x) => x,
None => {
// we processed the whole row, we can safely break
negative_index = true;
break;
}
};
merge = true;
}
}
if !negative_index {
for empty_elem in self.moves_next[1][i].iter_mut().rev().skip(SIZE - 1 - j) {
*empty_elem = 0;
}
}
}
self.moves[1] = self.board != self.moves_next[1];
// update up
self.score_next[2] = 0;
for col in 0..SIZE {
let mut i = 0;
let mut merge = false;
for elem in self.board.iter().map(|row| row[col]).filter(|&x| x != 0) {
if merge && elem == self.moves_next[2][i - 1][col] {
self.moves_next[2][i - 1][col] *= 2;
self.score_next[2] += self.moves_next[2][i - 1][col];
merge = false;
} else {
self.moves_next[2][i][col] = elem;
i += 1;
merge = true;
}
}
for empty_elem in self.moves_next[2].iter_mut().skip(i).map(|row| &mut row[col]) {
*empty_elem = 0;
}
}
self.moves[2] = self.board != self.moves_next[2];
// update down
self.score_next[3] = 0;
for col in 0..SIZE {
let mut i = SIZE - 1;
let mut merge = false;
let mut negative_index = false;
for elem in self.board.iter().map(|row| row[col]).filter(|&x| x != 0).rev() {
if merge && elem == self.moves_next[3][i + 1][col] {
self.moves_next[3][i + 1][col] *= 2;
self.score_next[3] += self.moves_next[3][i + 1][col];
merge = false;
} else {
self.moves_next[3][i][col] = elem;
i = match i.checked_sub(1) {
Some(x) => x,
None => {
// we processed whole column, we can safely break
negative_index = true;
break;
}
};
merge = true;
}
}
if !negative_index {
for empty_elem in self.moves_next[3].iter_mut().rev().skip(SIZE - 1 - i).map(|row| &mut row[col]) {
*empty_elem = 0;
}
}
}
self.moves[3] = self.board != self.moves_next[3];
// update state
if self.moves.iter().all(|&x| !x) {
self.state = GameState::GameOver;
}
// update result
match self.result {
GameResult::Pending => {
let victory = self.board.iter().flat_map(|row| row.iter()).any(|&x| x >= 2048);
if victory {
self.result = GameResult::Victory;
} else if self.state == GameState::GameOver {
self.result = GameResult::Loss;
}
}
GameResult::Victory => {}
GameResult::Loss => {}
}
}
/// Find the best move to make based on the current board state.
/// Based on Monte Carlo algorithm (randomized guessing).
/// Uses multiple threads to speed up the process.
/// # Arguments
/// * ```depth``` - The number of simulated games to play to determine the best move. Recommended value is 1000.
/// # Returns
/// * ```Ok(GameMove)``` - The best move to make.
/// * ```Err(Error)``` - There are no valid moves left.
/// # Errors
/// * ```Error::NoValidMove``` - There are no valid moves left.
pub fn find_best_move(&self, depth: usize) -> Result<GameMove, Error> {
let possible_moves_count = self.moves.iter().filter(|&&x| x).count();
match possible_moves_count {
0 => Err(Error::NoValidMove),
1 => Ok(GameMove::from_index(self.moves.iter().position(|&val| val).unwrap())),
2.. => {
let mut thread_pool = ThreadPool::new(None).unwrap();
let mut depth_per_thread = depth / (possible_moves_count * thread_pool.size());
if depth_per_thread == 0 {
depth_per_thread = 1;
} else if depth_per_thread * possible_moves_count * thread_pool.size() != depth {
depth_per_thread += 1;
}
let moves_values = Arc::new(Mutex::new([0; 4]));
for move_ind in self.moves.iter().enumerate().filter_map(|(ind, &x)| if x { Some(ind) } else { None }) {
let move_type = GameMove::from_index(move_ind);
for _ in 0..thread_pool.size() {
let board_copy = self.board;
let moves_values = Arc::clone(&moves_values);
thread_pool.add_to_queue(move || {
let mut thread_score = 0;
for _ in 0..depth_per_thread {
let mut work_game = Self::from_existing(&board_copy, 0).unwrap();
work_game.make_move(move_type);
while let GameState::InProgress = work_game.state {
if work_game.make_move(
work_game
.moves
.iter()
.enumerate()
.filter_map(|(i, &b)| if b { Some(GameMove::from_index(i)) } else { None })
.choose(&mut thread_rng())
.unwrap(),
) && work_game.state == GameState::GameOver
{
break;
}
}
thread_score += work_game.score;
}
moves_values.lock().unwrap()[move_ind] += thread_score;
});
}
}
thread_pool.join();
let max_ind = moves_values.lock().unwrap().iter().enumerate().max_by_key(|(_, &x)| x).unwrap().0;
Ok(GameMove::from_index(max_ind))
}
}
}
}
impl<const SIZE: usize> Display for Game<SIZE> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
// find the maximum value in the board
let mut max_val = 0;
for row in &self.board {
for val in row {
if *val > max_val {
max_val = *val;
}
}
}
// find the number of digits in the maximum value
let mut max_len = 0;
if max_val == 0 {
max_len = 1;
}
while max_val != 0 {
max_len += 1;
max_val /= 10;
}
max_len += 1; // add one space
// create the output string
let mut output = String::from("Board:\n");
for row in &self.board {
for val in row {
write!(&mut output, "{:width$}", val, width = max_len).unwrap();
}
output.push('\n');
}
writeln!(&mut output, "Score: {}", self.score).unwrap();
write!(f, "{}", output)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn create_game_4() {
//! Test the creation of a new game with the default size (4x4)
let game: Game<4> = Game::new().unwrap();
let game_from = Game::from_existing(game.board(), 0).unwrap();
assert_eq!(game.size(), 4);
assert_eq!(game_from.size(), 4);
assert_eq!(game.score(), 0);
assert_eq!(game_from.score(), 0);
assert_eq!(game.state(), GameState::InProgress);
assert_eq!(game_from.state(), GameState::InProgress);
assert_eq!(game.result(), GameResult::Pending);
assert_eq!(game_from.result(), GameResult::Pending);
}
#[test]
fn create_game_5() {
//! Test the creation of a new game with a bigger size (5x5)
let game: Game<5> = Game::new().unwrap();
let game_from = Game::from_existing(game.board(), 0).unwrap();
assert_eq!(game.size(), 5);
assert_eq!(game_from.size(), 5);
assert_eq!(game.score(), 0);
assert_eq!(game_from.score(), 0);
assert_eq!(game.state(), GameState::InProgress);
assert_eq!(game_from.state(), GameState::InProgress);
assert_eq!(game.result(), GameResult::Pending);
assert_eq!(game_from.result(), GameResult::Pending);
}
#[test]
fn game_4_ai() {
//! Test the AI's ability to play a game with the default size (4x4)
let mut game: Game<4> = Game::new().unwrap();
while let Ok(best_move) = game.find_best_move(1_000) {
game.make_move(best_move);
}
assert_eq!(game.state(), GameState::GameOver);
assert_ne!(game.score(), 0);
}
#[test]
fn game_5_ai() {
//! Test the AI's ability to play a big game
let mut game: Game<5> = Game::new().unwrap();
while let Ok(best_move) = game.find_best_move(1_000) {
game.make_move(best_move);
}
assert_eq!(game.state(), GameState::GameOver);
assert_ne!(game.score(), 0);
}
}