1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
use crate::{
    edge::Edge,
    graph::{EdgeArrayEntry, EdgeID, Graph, NodeID},
};
use core::{cmp::max, ops::Range};

pub struct NodeArrayEntry {
    pub first_edge: EdgeID,
}

impl NodeArrayEntry {
    pub fn new(e: EdgeID) -> NodeArrayEntry {
        NodeArrayEntry { first_edge: e }
    }
}
pub struct StaticGraph<T: Ord> {
    node_array: Vec<NodeArrayEntry>,
    edge_array: Vec<EdgeArrayEntry<T>>,
}

impl<T: Ord + Copy> StaticGraph<T> {
    pub fn default() -> Self {
        Self {
            node_array: Vec::new(),
            edge_array: Vec::new(),
        }
    }
    pub fn new(mut input: Vec<impl Edge<ID = NodeID, DATA = T> + Ord>) -> Self {
        // TODO: renumber IDs if necessary
        let number_of_edges = input.len();
        let mut number_of_nodes = 0;
        for edge in &input {
            number_of_nodes = max(edge.source(), number_of_nodes);
            number_of_nodes = max(edge.target(), number_of_nodes);
        }

        let mut graph = Self::default();
        // +1 as we are going to add one sentinel node at the end
        graph.node_array.reserve(number_of_nodes + 1);
        graph.edge_array.reserve(number_of_edges);

        // sort input edges by source/target/data
        // TODO(dl): sorting by source suffices to construct adjacency array
        input.sort();

        // add first entry manually, rest will be computed
        graph.node_array.push(NodeArrayEntry::new(0));
        let mut offset = 0;
        for i in 0..(number_of_nodes) {
            while offset != input.len() && input[offset].source() == i {
                offset += 1;
            }
            graph.node_array.push(NodeArrayEntry::new(offset as EdgeID));
        }

        // add sentinel at the end of the node array
        graph
            .node_array
            .push(NodeArrayEntry::new((input.len()) as EdgeID));

        graph.edge_array = input
            .iter()
            .map(|edge| EdgeArrayEntry {
                target: edge.target(),
                data: *edge.data(),
            })
            .collect();
        debug_assert!(graph.check_integrity());
        graph
    }

    // In time O(V+E) check that the following invariants hold:
    // a) the target node of each edge is smaller than the number of nodes
    // b) index values for nodes first_edges are strictly increasing
    pub fn check_integrity(&self) -> bool {
        self.edge_array
            .iter()
            .all(|edge_entry| (edge_entry.target) < self.number_of_nodes())
            && self
                .node_array
                .windows(2)
                .all(|pair| pair[0].first_edge <= pair[1].first_edge)
    }
}

impl<T: Ord + Copy> Graph<T> for StaticGraph<T> {
    fn node_range(&self) -> Range<NodeID> {
        Range {
            start: 0,
            end: self.number_of_nodes() as NodeID,
        }
    }

    fn edge_range(&self, n: NodeID) -> Range<EdgeID> {
        Range {
            start: self.begin_edges(n),
            end: self.end_edges(n),
        }
    }

    fn number_of_nodes(&self) -> usize {
        self.node_array.len() - 1
    }

    fn number_of_edges(&self) -> usize {
        self.edge_array.len()
    }

    fn begin_edges(&self, n: NodeID) -> EdgeID {
        self.node_array[n].first_edge
    }

    fn end_edges(&self, n: NodeID) -> EdgeID {
        self.node_array[(n + 1)].first_edge
    }

    fn out_degree(&self, n: NodeID) -> usize {
        let up = self.end_edges(n);
        let down = self.begin_edges(n);
        up - down
    }

    fn target(&self, e: EdgeID) -> NodeID {
        self.edge_array[e].target
    }

    fn data(&self, e: EdgeID) -> &T {
        &self.edge_array[e].data
    }

    fn data_mut(&mut self, e: EdgeID) -> &mut T {
        &mut self.edge_array[e].data
    }

    fn find_edge(&self, s: NodeID, t: NodeID) -> Option<EdgeID> {
        for edge in self.edge_range(s) {
            if self.target(edge) == t {
                return Some(edge);
            }
        }
        None
    }
    fn find_edge_unchecked(&self, s: NodeID, t: NodeID) -> EdgeID {
        for edge in self.edge_range(s) {
            if self.target(edge) == t {
                return edge;
            }
        }
        EdgeID::MAX
    }
}

#[cfg(test)]
mod tests {
    use crate::edge::InputEdge;

    use crate::{graph::Graph, static_graph::StaticGraph};

    #[test]
    fn size() {
        type Graph = StaticGraph<i32>;
        let edges = vec![
            InputEdge::new(0, 1, 3),
            InputEdge::new(1, 2, 3),
            InputEdge::new(4, 2, 1),
            InputEdge::new(2, 3, 6),
            InputEdge::new(0, 4, 2),
            InputEdge::new(4, 5, 2),
            InputEdge::new(5, 3, 7),
            InputEdge::new(1, 5, 2),
        ];
        let graph = Graph::new(edges);
        assert_eq!(6, graph.number_of_nodes());
        assert_eq!(8, graph.number_of_edges());
    }

    #[test]
    fn degree() {
        type Graph = StaticGraph<i32>;
        let edges = vec![
            InputEdge::new(0, 1, 3),
            InputEdge::new(1, 2, 3),
            InputEdge::new(4, 2, 1),
            InputEdge::new(2, 3, 6),
            InputEdge::new(0, 4, 2),
            InputEdge::new(4, 5, 2),
            InputEdge::new(5, 3, 7),
            InputEdge::new(1, 5, 2),
        ];

        let graph = Graph::new(edges);
        let mut sum = 0;
        for i in graph.node_range() {
            sum += graph.out_degree(i);
        }
        assert_eq!(sum, graph.number_of_edges());
    }
}