1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
//! A set of compositional operations on [`Decoder`].
//!
//! The operations take simpler decoders as inputs with customization functions and produce more powerful ones as output.
pub mod adaptors;
use self::adaptors::{
DecoderAndThen, DecoderBoxed, DecoderMap, DecoderMapErr, DecoderMapInto, DecoderThen,
DecoderTryMap, DecoderTryMapInto,
};
use tokio_util::codec::Decoder;
/// Extension of [`Decoder`] with compositional operations.
pub trait DecoderExt<A, E>: Decoder<Item = A, Error = E> {
/// Applies a function `f` of type `A -> B` over the decoded value when that is `Ok(Some(a))`.
///
/// The function `f` cannot fail. If you need a fallible mapping, then consider [`DecoderExt::try_map`].
///
/// # Examples
///
/// ```
/// # use tokio_util::codec::Decoder;
/// # use bytes::BytesMut;
/// use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
///
/// # #[derive(Debug, PartialEq, Eq)]
/// struct Device(u8);
///
/// let device = uint8().map(Device).decode(&mut BytesMut::from("\x2A")).unwrap();
/// assert_eq!(device, Some(Device(42)));
/// ```
fn map<F, B>(self, f: F) -> DecoderMap<Self, F>
where
F: Fn(A) -> B,
Self: Sized,
{
DecoderMap::new(self, f)
}
/// Applies an `B::from` `A` conversion over the decoded value when that is `Ok(Some(a))`.
///
/// The conversion cannot fail. If you need a fallible conversion, then consider [`DecoderExt::try_map_into`].
///
/// # Examples
///
/// ```
/// # use tokio_util::codec::Decoder;
/// # use bytes::BytesMut;
/// use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
///
/// # #[derive(Debug, PartialEq, Eq)]
/// struct Device(u8);
///
/// impl From<u8> for Device {
/// fn from(value: u8) -> Self {
/// Self(value)
/// }
/// }
///
/// let device = uint8().map_into::<Device>().decode(&mut BytesMut::from("\x2A")).unwrap();
/// assert_eq!(device, Some(Device(42)));
/// ```
fn map_into<B>(self) -> DecoderMapInto<Self, B>
where
B: From<A>,
Self: Sized,
{
DecoderMapInto::new(self)
}
/// Applies a fallible function `f` of type `A -> Result<B, EE>` over the decoded value when that is `Ok(Some(a))`.
///
/// The function `f` can fail and that's handy when we interleave decoding with validation,
/// for instance, when mapping from a larger domain (e.g. `u8`) into a smaller co-domain (e.g. `Version::v1`).
/// If you don't need a fallible mapping, then consider [`DecoderExt::map`].
///
/// The mapping can return an error type `EE` other than `E` as long as there is an implicit conversion [`From<E>`].
///
/// # Examples
///
/// ```
/// # use tokio_util::codec::Decoder;
/// # use bytes::BytesMut;
/// use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
///
/// # #[derive(Debug, PartialEq, Eq)]
/// enum Version {
/// V1
/// }
///
/// impl TryFrom<u8> for Version {
/// type Error = std::io::Error;
///
/// fn try_from(value: u8) -> Result<Self, Self::Error> {
/// match value {
/// 1 => Ok(Version::V1),
/// _ => Err(std::io::Error::from(std::io::ErrorKind::InvalidData))
/// }
/// }
/// }
///
/// let mut decoder = uint8().try_map(Version::try_from);
///
/// let version_ok = decoder.decode(&mut BytesMut::from("\x01")).unwrap();
/// assert_eq!(version_ok, Some(Version::V1));
///
/// let version_err = decoder.decode(&mut BytesMut::from("\x02")).unwrap_err();
/// assert_eq!(version_err.kind(), std::io::ErrorKind::InvalidData);
/// ```
fn try_map<F, B, EE>(self, f: F) -> DecoderTryMap<Self, F, EE>
where
F: Fn(A) -> Result<B, EE>,
Self: Sized,
{
DecoderTryMap::new(self, f)
}
/// Applies an `B::try_from` `A` conversion over the decoded value when that is `Ok(Some(a))`.
///
/// The conversion can fail and that's handy when we interleave decoding with validation,
/// for instance, when mapping from a larger domain (e.g. `u8`) into a smaller co-domain (e.g. `Version::v1`).
/// If you don't need a fallible conversion, then consider [`DecoderExt::map`].
///
/// # Examples
///
/// ```
/// # use tokio_util::codec::Decoder;
/// # use bytes::BytesMut;
/// use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
///
/// # #[derive(Debug, PartialEq, Eq)]
/// enum Version {
/// V1
/// }
///
/// impl TryFrom<u8> for Version {
/// type Error = std::io::Error;
///
/// fn try_from(value: u8) -> Result<Self, Self::Error> {
/// match value {
/// 1 => Ok(Version::V1),
/// _ => Err(std::io::Error::from(std::io::ErrorKind::InvalidData))
/// }
/// }
/// }
///
/// let mut decoder = uint8().try_map_into::<Version>();
///
/// let version_ok = decoder.decode(&mut BytesMut::from("\x01")).unwrap();
/// assert_eq!(version_ok, Some(Version::V1));
///
/// let version_err = decoder.decode(&mut BytesMut::from("\x02")).unwrap_err();
/// assert_eq!(version_err.kind(), std::io::ErrorKind::InvalidData);
/// ```
fn try_map_into<B>(self) -> DecoderTryMapInto<Self, B, B::Error>
where
B: TryFrom<A>,
Self: Sized,
{
DecoderTryMapInto::new(self)
}
/// Applies a function `f` of type `E -> EE` over the decoding error when that is `Err(e)`.
///
/// That's handy when we need to adapt errors across boundaries.
///
/// # Examples
///
/// ```
/// # use tokio_util::codec::Decoder;
/// # use bytes::BytesMut;
/// use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
///
/// fn decoder_operation() -> impl Decoder<Item = Operation, Error = std::io::Error> {
/// # uint8().try_map(|_| Err(std::io::Error::from(std::io::ErrorKind::Other)))
/// }
///
/// # #[derive(Debug, PartialEq, Eq)]
/// enum Operation {
/// TurnOff, Turning
/// }
///
/// # #[derive(Debug, PartialEq, Eq)]
/// struct OperationError;
///
/// impl From<std::io::Error> for OperationError {
/// fn from(value: std::io::Error) -> Self {
/// Self
/// }
/// }
///
/// let err = decoder_operation().map_err(|_| OperationError).decode(&mut BytesMut::from("\x00")); // invalid operation number
/// assert_eq!(err, Err(OperationError));
/// ```
fn map_err<F, EE>(self, f: F) -> DecoderMapErr<Self, F>
where
F: Fn(E) -> EE,
Self: Sized,
{
DecoderMapErr::new(self, f)
}
/// Chains a decoder of `B` on the *remaining* bytes after applying this decoder, then returns a pair of the individual values `(a, b)`.
///
/// This enables the application of decoders in sequence where a step does not depend on its predecessor (when such a dependency exists, consider [`DecoderExt::and_then`].
///
/// The next decoder can return an error type `EE` other than `E` as long as there is an implicit conversion [`From<E>`].
///
/// # Examples
///
/// ```
/// # use tokio_util::codec::Decoder;
/// # use bytes::BytesMut;
/// use tokio_util_codec_compose::{decode::DecoderExt, primitives::uint8};
///
/// let pair = uint8().then(uint8()).decode(&mut BytesMut::from("\x2A\x3B")).unwrap();
///
/// assert_eq!(pair, Some((0x2A, 0x3B)));
/// ```
// TODO: Flatten resulting tuple.
fn then<DNext, B, EE>(self, next: DNext) -> DecoderThen<Self, DNext, A, EE>
where
DNext: Decoder<Item = B, Error = EE>,
EE: From<E>,
Self: Sized,
{
DecoderThen::new(self, next)
}
/// Chains a function `f` of type `&A -> Box<Decoder<Item = B, Error = E>>` over the decoded value when that is `Ok(Some(a))`.
///
/// Contrary to [`DecoderExt::map`], the function `f` can decide (dynamically) which decoder to return next according to `a`, which enables complex behaviors
/// out of simple building blocks by defining dependency relationships between decoders.
/// e.g. first we decode the header of a message and use that information, say protocol version, to then select the appropriate
/// decoder among multiple candidates, say one per protocol version, for the body.
///
/// The next decoder can return an error type `EE` other than `E` as long as there is an implicit conversion [`From<E>`].
///
/// The function `f` cannot fail.
///
/// Notice that `f` can't take ownership of the first value `a`, hence the shared borrow, because otherwise it would not be possible to decode incomplete frames
/// without cloning or maybe saving incoming bytes and re-running this decoder. If you need access to the first value, use [`DecoderAndThen::first_value`]
/// or [`DecoderAndThen::first_value_as_mut`].
///
/// # Stateful decoders and multi-frames
///
/// Due to the stateful behaviour of this combinator, if you need to decode multiple frames, you'd need to [`DecoderAndThen::reset`] between frames to clean up
/// the previous value `a` and therefore its influence on `b`.
///
/// # Examples
///
/// ```
/// # use tokio_util::codec::Decoder;
/// # use bytes::BytesMut;
/// use tokio_util_codec_compose::{decode::{adaptors::DecoderBoxed, DecoderExt}, primitives::{uint8, uint16_be, uint16_le}};
///
/// fn payload_for_version(version: &u8) -> DecoderBoxed<u16, std::io::Error> {
/// if *version == 0x01 { uint16_be().boxed() } else { uint16_le().boxed() }
/// }
///
/// let mut decoder = uint8().and_then(payload_for_version);
///
/// let device_big_endian = decoder.decode(&mut BytesMut::from("\x01\x2A\x3B")).unwrap();
/// assert_eq!(device_big_endian, Some(0x2A3B));
///
/// decoder.reset();
///
/// let device_little_endian = decoder.decode(&mut BytesMut::from("\x00\x2A\x3B")).unwrap();
/// assert_eq!(device_little_endian, Some(0x3B2A));
/// ```
fn and_then<F, DNext, B, EE>(self, f: F) -> DecoderAndThen<Self, F, DNext, A, EE>
where
F: Fn(&A) -> DNext,
DNext: Decoder<Item = B, Error = EE>,
EE: From<E>,
Self: Sized,
{
DecoderAndThen::new(self, f)
}
/// Shorthand for boxing this decoder while also widening its type to ease inference and spelling.
///
/// That's probably useful when combined with [`DecoderExt::and_then`] where the continuation
/// yields decoders with different types.
fn boxed(self) -> DecoderBoxed<A, E>
where
Self: Sized,
Self: 'static,
{
DecoderBoxed::new(self)
}
}
impl<D, A, E> DecoderExt<A, E> for D where D: Decoder<Item = A, Error = E> {}