1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//! Async TLS streams
//!
//! This library is an implementation of TLS streams using the most appropriate
//! system library by default for negotiating the connection. That is, on
//! Windows this library uses SChannel, on OSX it uses SecureTransport, and on
//! other platforms it uses OpenSSL.
//!
//! Each TLS stream implements the `Read` and `Write` traits to interact and
//! interoperate with the rest of the futures I/O ecosystem. Client connections
//! initiated from this crate verify hostnames automatically and by default.
//!
//! This crate primarily exports this ability through two extension traits,
//! `TlsConnectorExt` and `TlsAcceptorExt`. These traits augment the
//! functionality provided by the `native-tls` crate, on which this crate is
//! built. Configuration of TLS parameters is still primarily done through the
//! `native-tls` crate.

#![deny(missing_docs)]
#![doc(html_root_url = "https://docs.rs/tokio-tls/0.1")]

#[cfg_attr(feature = "tokio-proto", macro_use)]
extern crate futures;
extern crate tls_api;
#[macro_use]
extern crate tokio_io;

use std::fmt;
use std::io::{self, Read, Write};

use futures::{Poll, Future, Async};
use tls_api::{HandshakeError, Error, TlsConnector, TlsAcceptor};
use tokio_io::{AsyncRead, AsyncWrite};

pub mod proto;

/// A wrapper around an underlying raw stream which implements the TLS or SSL
/// protocol.
///
/// A `TlsStream<S>` represents a handshake that has been completed successfully
/// and both the server and the client are ready for receiving and sending
/// data. Bytes read from a `TlsStream` are decrypted from `S` and bytes written
/// to a `TlsStream` are encrypted when passing through to `S`.
#[derive(Debug)]
pub struct TlsStream<S> {
    inner: tls_api::TlsStream<S>,
}

/// Future returned from `TlsConnectorExt::connect_async` which will resolve
/// once the connection handshake has finished.
pub struct ConnectAsync<S> {
    inner: MidHandshake<S>,
}

/// Future returned from `TlsAcceptorExt::accept_async` which will resolve
/// once the accept handshake has finished.
pub struct AcceptAsync<S> {
    inner: MidHandshake<S>,
}

struct MidHandshake<S> {
    inner: Option<Result<tls_api::TlsStream<S>, HandshakeError<S>>>,
}

impl<S> TlsStream<S> {
    /// Get access to the internal `tls_api::TlsStream` stream which also
    /// transitively allows access to `S`.
    pub fn get_ref(&self) -> &tls_api::TlsStream<S> {
        &self.inner
    }

    /// Get mutable access to the internal `tls_api::TlsStream` stream which
    /// also transitively allows mutable access to `S`.
    pub fn get_mut(&mut self) -> &mut tls_api::TlsStream<S> {
        &mut self.inner
    }
}

impl<S: Read + Write> Read for TlsStream<S> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.inner.read(buf)
    }
}

impl<S: Read + Write> Write for TlsStream<S> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.inner.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.inner.flush()
    }
}

impl<S: AsyncRead + AsyncWrite> AsyncRead for TlsStream<S> {
}

impl<S: AsyncRead + AsyncWrite + 'static> AsyncWrite for TlsStream<S> {
    fn shutdown(&mut self) -> Poll<(), io::Error> {
        try_nb!(self.inner.shutdown());
        self.inner.get_mut().shutdown()
    }
}

/// Connects the provided stream with this connector, assuming the provided
/// domain.
///
/// This function will internally call `TlsConnector::connect` to connect
/// the stream and returns a future representing the resolution of the
/// connection operation. The returned future will resolve to either
/// `TlsStream<S>` or `Error` depending if it's successful or not.
///
/// This is typically used for clients who have already established, for
/// example, a TCP connection to a remote server. That stream is then
/// provided here to perform the client half of a connection to a
/// TLS-powered server.
///
/// # Compatibility notes
///
/// Note that this method currently requires `S: Read + Write` but it's
/// highly recommended to ensure that the object implements the `AsyncRead`
/// and `AsyncWrite` traits as well, otherwise this function will not work
/// properly.
pub fn connect_async<C, S>(connector: &C, domain: &str, stream: S) -> ConnectAsync<S>
    where
        S : io::Read + io::Write + fmt::Debug + Send + Sync + 'static,
        C : TlsConnector,
{
    ConnectAsync {
        inner: MidHandshake {
            inner: Some(connector.connect(domain, stream)),
        },
    }
}

/// Accepts a new client connection with the provided stream.
///
/// This function will internally call `TlsAcceptor::accept` to connect
/// the stream and returns a future representing the resolution of the
/// connection operation. The returned future will resolve to either
/// `TlsStream<S>` or `Error` depending if it's successful or not.
///
/// This is typically used after a new socket has been accepted from a
/// `TcpListener`. That socket is then passed to this function to perform
/// the server half of accepting a client connection.
///
/// # Compatibility notes
///
/// Note that this method currently requires `S: Read + Write` but it's
/// highly recommended to ensure that the object implements the `AsyncRead`
/// and `AsyncWrite` traits as well, otherwise this function will not work
/// properly.
pub fn accept_async<A, S>(acceptor: &A, stream: S) -> AcceptAsync<S>
    where
        S : io::Read + io::Write + fmt::Debug + Send + Sync + 'static,
        A : TlsAcceptor,
{
    AcceptAsync {
        inner: MidHandshake {
            inner: Some(acceptor.accept(stream)),
        },
    }
}

// TODO: change this to AsyncRead/AsyncWrite on next major version
impl<S: Read + Write + 'static> Future for ConnectAsync<S> {
    type Item = TlsStream<S>;
    type Error = Error;

    fn poll(&mut self) -> Poll<TlsStream<S>, Error> {
        self.inner.poll()
    }
}

// TODO: change this to AsyncRead/AsyncWrite on next major version
impl<S: Read + Write + 'static> Future for AcceptAsync<S> {
    type Item = TlsStream<S>;
    type Error = Error;

    fn poll(&mut self) -> Poll<TlsStream<S>, Error> {
        self.inner.poll()
    }
}

// TODO: change this to AsyncRead/AsyncWrite on next major version
impl<S: Read + Write + 'static> Future for MidHandshake<S> {
    type Item = TlsStream<S>;
    type Error = Error;

    fn poll(&mut self) -> Poll<TlsStream<S>, Error> {
        match self.inner.take().expect("cannot poll MidHandshake twice") {
            Ok(stream) => Ok(TlsStream { inner: stream }.into()),
            Err(HandshakeError::Failure(e)) => Err(e),
            Err(HandshakeError::Interrupted(s)) => {
                match s.handshake() {
                    Ok(stream) => Ok(TlsStream { inner: stream }.into()),
                    Err(HandshakeError::Failure(e)) => Err(e),
                    Err(HandshakeError::Interrupted(s)) => {
                        self.inner = Some(Err(HandshakeError::Interrupted(s)));
                        Ok(Async::NotReady)
                    }
                }
            }
        }
    }
}