1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use crate::types::Metadata;
use cosmwasm_schema::cw_serde;
use cosmwasm_std::{Binary, CosmosMsg, CustomMsg, StdResult, Uint128};

/// A top-level Custom message for the token factory.
/// It is embedded like this to easily allow adding other variants that are custom
/// to your chain, or other "standardized" extensions along side it.
#[cw_serde]
pub enum TokenFactoryMsg {
    Token(TokenMsg),
}

/// Special messages to be supported by any chain that supports token_factory
#[cw_serde]
pub enum TokenMsg {
    /// CreateDenom creates a new factory denom, of denomination:
    /// factory/{creating contract bech32 address}/{Subdenom}
    /// Subdenom can be of length at most 44 characters, in [0-9a-zA-Z./]
    /// Empty subdenoms are valid.
    /// The (creating contract address, subdenom) pair must be unique.
    /// The created denom's admin is the creating contract address,
    /// but this admin can be changed using the UpdateAdmin binding.
    ///
    /// If you set an initial metadata here, this is equivalent
    /// to calling SetMetadata directly on the returned denom.
    CreateDenom {
        subdenom: String,
        metadata: Option<Metadata>,
    },
    /// ChangeAdmin changes the admin for a factory denom.
    /// Can only be called by the current contract admin.
    /// If the NewAdminAddress is empty, the denom will have no admin.
    ChangeAdmin {
        denom: String,
        new_admin_address: String,
    },
    /// Contracts can mint native tokens for an existing factory denom
    /// that they are the admin of.
    MintTokens {
        denom: String,
        amount: Uint128,
        mint_to_address: String,
    },
    /// Contracts can burn native tokens for an existing factory denom
    /// that they are the admin of.
    BurnTokens {
        denom: String,
        amount: Uint128,
        burn_from_address: String,
    },
    /// Contracts can force transfer tokens for an existing factory denom
    /// that they are the admin of.    
    ForceTransfer {
        denom: String,
        amount: Uint128,
        from_address: String,
        to_address: String,
    },
    SetMetadata {
        denom: String,
        metadata: Metadata,
    },
}

impl TokenMsg {
    pub fn mint_contract_tokens(denom: String, amount: Uint128, mint_to_address: String) -> Self {
        TokenMsg::MintTokens {
            denom,
            amount,
            mint_to_address,
        }
    }

    pub fn burn_contract_tokens(
        denom: String,
        amount: Uint128,
        burn_from_address: String,
    ) -> Self {
        TokenMsg::BurnTokens {
            denom,
            amount,
            burn_from_address,
        }
    }

    pub fn force_transfer_tokens(
        denom: String,
        amount: Uint128,
        from_address: String,
        to_address: String,
    ) -> Self {
        TokenMsg::ForceTransfer {
            denom,
            amount,
            from_address,
            to_address,
        }
    }
}

impl From<TokenMsg> for CosmosMsg<TokenFactoryMsg> {
    fn from(msg: TokenMsg) -> CosmosMsg<TokenFactoryMsg> {
        CosmosMsg::Custom(TokenFactoryMsg::Token(msg))
    }
}

impl CustomMsg for TokenFactoryMsg {}

/// This is in the data field in the reply from a TokenMsg::CreateDenom SubMsg
/// Custom code to parse from protobuf with minimal wasm bytecode bloat
pub struct CreateDenomResponse {
    pub new_token_denom: String,
}

impl CreateDenomResponse {
    /// Call this to process data field from the SubMsg data field
    pub fn from_reply_data(data: Binary) -> StdResult<Self> {
        // Manual protobuf decoding
        let mut data = Vec::from(data);
        // Parse contract addr
        let new_token_denom = copied_from_cw_utils::parse_protobuf_string(&mut data, 1)?;
        Ok(CreateDenomResponse { new_token_denom })
    }

    pub fn encode(&self) -> StdResult<Binary> {
        // TODO
        Ok(b"".into())
    }
}

// FIXME: just import cw_utils::parse_protobuf_string when it is exported
mod copied_from_cw_utils {
    use cosmwasm_std::{StdError, StdResult};

    // Protobuf wire types (https://developers.google.com/protocol-buffers/docs/encoding)
    const WIRE_TYPE_LENGTH_DELIMITED: u8 = 2;
    // Up to 9 bytes of varints as a practical limit (https://github.com/multiformats/unsigned-varint#practical-maximum-of-9-bytes-for-security)
    const VARINT_MAX_BYTES: usize = 9;

    pub fn parse_protobuf_string(data: &mut Vec<u8>, field_number: u8) -> StdResult<String> {
        let str_field = parse_protobuf_length_prefixed(data, field_number)?;
        Ok(String::from_utf8(str_field)?)
    }

    /// Helper function to parse length-prefixed protobuf fields.
    /// The remaining of the data is kept in the data parameter.
    fn parse_protobuf_length_prefixed(data: &mut Vec<u8>, field_number: u8) -> StdResult<Vec<u8>> {
        if data.is_empty() {
            return Ok(vec![]);
        };
        let mut rest_1 = data.split_off(1);
        let wire_type = data[0] & 0b11;
        let field = data[0] >> 3;

        if field != field_number {
            return Err(StdError::parse_err(
                "length_prefix_field",
                format!(
                    "failed to decode Protobuf message: invalid field #{} for field #{}",
                    field, field_number
                ),
            ));
        }
        if wire_type != WIRE_TYPE_LENGTH_DELIMITED {
            return Err(StdError::parse_err(
                "length_prefix_field",
                format!(
                    "failed to decode Protobuf message: field #{}: invalid wire type {}",
                    field_number, wire_type
                ),
            ));
        }

        let len = parse_protobuf_varint(&mut rest_1, field_number)?;
        if rest_1.len() < len {
            return Err(StdError::parse_err(
                "length_prefix_field",
                format!(
                    "failed to decode Protobuf message: field #{}: message too short",
                    field_number
                ),
            ));
        }
        *data = rest_1.split_off(len);

        Ok(rest_1)
    }

    /// Base128 varint decoding.
    /// The remaining of the data is kept in the data parameter.
    fn parse_protobuf_varint(data: &mut Vec<u8>, field_number: u8) -> StdResult<usize> {
        let data_len = data.len();
        let mut len: u64 = 0;
        let mut i = 0;
        while i < VARINT_MAX_BYTES {
            if data_len == i {
                return Err(StdError::parse_err(
                    "varint",
                    format!(
                        "failed to decode Protobuf message: field #{}: varint data too short",
                        field_number
                    ),
                ));
            }
            len += ((data[i] & 0x7f) as u64) << (i * 7);
            if data[i] & 0x80 == 0 {
                break;
            }
            i += 1;
        }
        if i == VARINT_MAX_BYTES {
            return Err(StdError::parse_err(
                "varint",
                format!(
                    "failed to decode Protobuf message: field #{}: varint data too long",
                    field_number
                ),
            ));
        }
        *data = data[i + 1..].to_owned();

        Ok(len as usize) // Gently fall back to the arch's max addressable size
    }
}