1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//!# TMN(Too Many Numbers)
//!
//! Library for working with complex numbers and quaternions
//!
//! Библиотека для работы с комплексными числами и кватернионами
use std::ops::{Add, Mul, Neg};
use crate::complex::CNum;
use crate::quaternion::QNum;

pub mod complex;
pub mod quaternion;
pub mod cassette;

///Enum for convenient work with different types of numbers
///
///Перечисление для удобной работы с разными видами чисел
pub enum Nums{
    Real(f32),
    Complex(CNum),
    Quaternion(QNum)
}

impl Nums{
    ///The method for obtaining the conjugate number
    ///
    ///Метод для получения сопряженного числа
    ///
    /// # Example
    ///```
    /// use tmn::Nums;
    /// use tmn::quaternion::QNum;
    /// let a = Nums::Quaternion(QNum::make_from_r(1_f32, 1_f32, 1_f32, 1_f32));
    /// let b = a.conj();
    /// match b{
    ///    Nums::Quaternion(qnum)=>{
    ///        assert_eq!((1_f32, -1_f32, -1_f32, -1_f32), qnum.get())
    ///    },
    ///    _=>panic!("WrongType of Nums")
    /// }
    /// ```
    /// ```
    /// use tmn::Nums;
    /// use tmn::complex::CNum;
    /// let a = Nums::Complex(CNum::make(1_f32, 1_f32));
    /// let b = a.conj();
    /// match b{
    ///    Nums::Complex(cnum)=>{
    ///        assert_eq!((1_f32, -1_f32), cnum.get())
    ///    },
    ///    _=>panic!("WrongType of Nums")
    /// }
    /// ```
    pub fn conj(&self)->Self{
        match self{
            Nums::Real(re) => Nums::Real(*re),
            Nums::Complex(cnum) => Nums::Complex(cnum.conj()),
            Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.conj())
        }
    }
    fn normalize(o:(f32, f32, f32)) -> (f32, f32, f32){//Нормализация вектора o
        let m = (o.0*o.0+o.1*o.1+o.2*o.2).powf(0.5);
        if m == 0_f32 {
            return (f32::NAN, f32::NAN, f32::NAN);
        }
        (o.0/m, o.1/m, o.2/m)
    }
    ///The method for rotating a number around the axis given by the vector 'o' by the angle 'ang' (Angle in degrees). The axis of rotation only affects the rotation of the quaternion.
    ///
    ///Метод для вращения числа вокруг оси, заданной вектором 'o' на угол 'ang' (Угол в градусах). Ось вращения влияет только на поворот кватерниона.
    ///
    /// # Example
    ///
    ///```
    /// use tmn::Nums;
    /// use tmn::quaternion::QNum;
    /// let mut a = Nums::Quaternion(QNum::make_from_r(0_f32, 1_f32, 0_f32, 0_f32));
    /// a = a.rot(90_f32, (0_f32, 0_f32, 1_f32));
    /// match a {
    ///    Nums::Quaternion(qnum)=>{
    ///        let (r, i, j, k) = qnum.get();//0.0000001 - точность расчетов
    ///        //Ожидаемый ответ 0, 0, 1, 0
    ///        assert!((r-0_f32).abs() < 0.0000001);
    ///        assert!((i-0_f32).abs() < 0.0000001);
    ///        assert!((j-1_f32).abs() < 0.0000001);
    ///        assert!((k-0_f32).abs() < 0.0000001);
    ///    },
    ///    _=>panic!("WrongType of Nums")
    /// }
    /// ```
    ///

    pub fn rot(&self, ang:f32, o:(f32, f32, f32)) -> Self{
        let o = Nums::normalize(o);
        match self {
            Nums::Real(re)=>Nums::Real(*re),
            Nums::Complex(cnum)=>Nums::Complex(cnum.pow(ang/90_f32)),
            Nums::Quaternion(qnum)=> {
                assert!(!o.0.is_nan());
                let q = QNum::make_from_a(ang*std::f32::consts::PI/180_f32, o);
                Nums::Quaternion(q.mult_q(qnum.clone()).mult_q(q.conj()))
            }
        }
    }
    ///The method for setting values to specific coefficients
    ///
    /// Метод для установки значений в конкретные коэффициенты
    ///
    /// # Example
    ///```
    /// use tmn::{Nums, complex};
    /// use tmn::complex::CNum;
    /// let mut a = Nums::Complex(CNum::make_zero());
    /// a = a.set(complex::R|complex::I, 3_f32);
    /// assert!(Nums::Complex(CNum::make(3_f32, 3_f32))==a);
    /// ```
    pub fn set(&self, c:u8, v:f32)->Self{
        match self {
            Nums::Real(re)=>Nums::Real(*re),
            Nums::Complex(cnum)=>Nums::Complex(cnum.set(c, v)),
            Nums::Quaternion(qnum)=>Nums::Quaternion(qnum.set(c, v))
        }
    }
    ///The method for cloning the Nums element
    ///
    ///Метод для клонирования элемента Nums
    ///
    /// # Example
    ///```
    /// use tmn::Nums;
    /// use tmn::quaternion::QNum;
    /// let a = Nums::Quaternion(QNum::make_zero());
    /// let b = a.clone();
    /// assert!(a==b);
    /// ```
    pub fn clone(&self)->Self{
        match self {
            Nums::Real(re) => Nums::Real(*re),
            Nums::Complex(cnum)=> Nums::Complex(cnum.clone()),
            Nums::Quaternion(qnum) => Nums::Quaternion(qnum.clone())
        }
    }
}

impl PartialEq for Nums{
    fn eq(&self, other: &Self) -> bool {
        match self{
            Nums::Real(re)=>{
                match other {
                    Nums::Real(re1) => re1==re,
                    _=>false
                }
            },
            Nums::Complex(cnum)=>{
                match other{
                    Nums::Complex(cnum1)=>cnum==cnum1,
                    _=>false
                }
            },
            Nums::Quaternion(qnum)=>{
                match other {
                    Nums::Quaternion(qnum1)=>qnum==qnum1,
                    _=>false
                }
            }
        }
    }
}

impl Add for Nums{
    type Output = Nums;
    ///
    /// The method returns the sum of two Nums elements
    ///
    /// Метод возвращает сумму двух элементов Nums
    ///
    /// # Examples
    ///```
    /// use tmn::Nums;
    /// use tmn::complex::CNum;
    /// use tmn::quaternion::QNum;
    ///
    /// let a = Nums::Quaternion(QNum::make_from_r(0_f32, 0_f32, 1_f32, 1_f32));
    /// let b = Nums::Complex(CNum::make(1_f32, 1_f32));
    ///
    /// let c = a+b;
    /// assert!(Nums::Quaternion(QNum::make_from_r(1_f32,1_f32,1_f32,1_f32))==c);
    /// ```
    fn add(self, rhs: Self) -> Self::Output{
        match self {
            Nums::Real(re)=>{
                match rhs {
                    Nums::Real(re1)=>Nums::Real(re + re1),
                    Nums::Complex(cnum) => Nums::Complex(cnum.add_r(re)),
                    Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.add_r(re))
                }
            }
            Nums::Complex(cnum) =>{
                match rhs {
                    Nums::Real(re)=> Nums::Complex(cnum.add_r(re)),
                    Nums::Complex(cnum1) => Nums::Complex(cnum.add_c(cnum1)),
                    Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.add_c(cnum.clone()))
                }
            },
            Nums::Quaternion(qnum)=>{
                match rhs {
                    Nums::Real(re)=> Nums::Quaternion(qnum.add_r(re)),
                    Nums::Complex(cnum) => Nums::Quaternion(qnum.add_c(cnum)),
                    Nums::Quaternion(qnum1)=> Nums::Quaternion(qnum.add_q(qnum1))
                }
            }
        }
    }
}

impl Mul for Nums{
    type Output = Self;

    ///The method returns the product of two Nums elements
    ///
    /// Метод возвращает произведение двух элементов Nums
    ///
    /// # Examples
    ///```
    /// use tmn::Nums;
    /// use tmn::complex::CNum;
    /// use tmn::quaternion::QNum;
    ///
    /// let a = Nums::Quaternion(QNum::make_from_r(0_f32, 4_f32, 7_f32, 1_f32));
    /// let b = Nums::Complex(CNum::make(43_f32, 2_f32));
    ///
    /// let c = a*b;
    /// assert!(Nums::Quaternion(QNum::make_from_r(-8_f32, 172_f32, 303_f32, 29_f32))==c);
    /// ```
    fn mul(self, rhs: Self) -> Self::Output {
        match self {
            Nums::Real(re)=>{
                match rhs {
                    Nums::Real(re1)=>Nums::Real(re * re1),
                    Nums::Complex(cnum) => Nums::Complex(cnum.mult_r(re)),
                    Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.mult_r(re))
                }
            }
            Nums::Complex(cnum) =>{
                match rhs {
                    Nums::Real(re)=> Nums::Complex(cnum.mult_r(re)),
                    Nums::Complex(cnum1) => Nums::Complex(cnum.mult_c(cnum1)),
                    Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.mult_c(cnum.clone()))
                }
            },
            Nums::Quaternion(qnum)=>{
                match rhs {
                    Nums::Real(re)=> Nums::Quaternion(qnum.mult_r(re)),
                    Nums::Complex(cnum) => Nums::Quaternion(qnum.mult_c(cnum)),
                    Nums::Quaternion(qnum1)=> Nums::Quaternion(qnum.mult_q(qnum1))
                }
            }
        }
    }
}

impl Neg for Nums {
    type Output = Self;
    ///Redefined negative operator
    ///
    ///Переопределенный оператор отрицательного значения
    ///
    /// # Example
    ///```
    /// use tmn::Nums;
    /// use tmn::quaternion::QNum;
    /// let qnum = Nums::Quaternion(-QNum::make_from_r(3_f32, 4_f32, 1_f32, 2_f32));
    /// assert!(qnum== Nums::Quaternion(QNum::make_from_r(-3_f32, -4_f32, -1_f32, -2_f32)));
    /// ```
    fn neg(self) -> Self::Output {
        self.mul(Nums::Real(-1_f32))
    }
}