1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
//!# TMN(Too Many Numbers)
//!
//! Library for working with complex numbers and quaternions
//!
//! Библиотека для работы с комплексными числами и кватернионами
use std::ops::{Add, Mul, Neg};
use crate::complex::CNum;
use crate::quaternion::QNum;
pub mod complex;
pub mod quaternion;
pub mod cassette;
///Enum for convenient work with different types of numbers
///
///Перечисление для удобной работы с разными видами чисел
pub enum Nums{
Real(f32),
Complex(CNum),
Quaternion(QNum)
}
impl Nums{
///The method for obtaining the conjugate number
///
///Метод для получения сопряженного числа
///
/// # Example
///```
/// use tmn::Nums;
/// use tmn::quaternion::QNum;
/// let a = Nums::Quaternion(QNum::make_from_r(1_f32, 1_f32, 1_f32, 1_f32));
/// let b = a.conj();
/// match b{
/// Nums::Quaternion(qnum)=>{
/// assert_eq!((1_f32, -1_f32, -1_f32, -1_f32), qnum.get())
/// },
/// _=>panic!("WrongType of Nums")
/// }
/// ```
/// ```
/// use tmn::Nums;
/// use tmn::complex::CNum;
/// let a = Nums::Complex(CNum::make(1_f32, 1_f32));
/// let b = a.conj();
/// match b{
/// Nums::Complex(cnum)=>{
/// assert_eq!((1_f32, -1_f32), cnum.get())
/// },
/// _=>panic!("WrongType of Nums")
/// }
/// ```
pub fn conj(&self)->Self{
match self{
Nums::Real(re) => Nums::Real(*re),
Nums::Complex(cnum) => Nums::Complex(cnum.conj()),
Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.conj())
}
}
fn normalize(o:(f32, f32, f32)) -> (f32, f32, f32){//Нормализация вектора o
let m = (o.0*o.0+o.1*o.1+o.2*o.2).powf(0.5);
if m == 0_f32 {
return (f32::NAN, f32::NAN, f32::NAN);
}
(o.0/m, o.1/m, o.2/m)
}
///The method for rotating a number around the axis given by the vector 'o' by the angle 'ang' (Angle in degrees). The axis of rotation only affects the rotation of the quaternion.
///
///Метод для вращения числа вокруг оси, заданной вектором 'o' на угол 'ang' (Угол в градусах). Ось вращения влияет только на поворот кватерниона.
///
/// # Example
///
///```
/// use tmn::Nums;
/// use tmn::quaternion::QNum;
/// let mut a = Nums::Quaternion(QNum::make_from_r(0_f32, 1_f32, 0_f32, 0_f32));
/// a = a.rot(90_f32, (0_f32, 0_f32, 1_f32));
/// match a {
/// Nums::Quaternion(qnum)=>{
/// let (r, i, j, k) = qnum.get();//0.0000001 - точность расчетов
/// //Ожидаемый ответ 0, 0, 1, 0
/// assert!((r-0_f32).abs() < 0.0000001);
/// assert!((i-0_f32).abs() < 0.0000001);
/// assert!((j-1_f32).abs() < 0.0000001);
/// assert!((k-0_f32).abs() < 0.0000001);
/// },
/// _=>panic!("WrongType of Nums")
/// }
/// ```
///
pub fn rot(&self, ang:f32, o:(f32, f32, f32)) -> Self{
let o = Nums::normalize(o);
match self {
Nums::Real(re)=>Nums::Real(*re),
Nums::Complex(cnum)=>Nums::Complex(cnum.pow(ang/90_f32)),
Nums::Quaternion(qnum)=> {
assert!(!o.0.is_nan());
let q = QNum::make_from_a(ang*std::f32::consts::PI/180_f32, o);
Nums::Quaternion(q.mult_q(qnum.clone()).mult_q(q.conj()))
}
}
}
///The method for setting values to specific coefficients
///
/// Метод для установки значений в конкретные коэффициенты
///
/// # Example
///```
/// use tmn::{Nums, complex};
/// use tmn::complex::CNum;
/// let mut a = Nums::Complex(CNum::make_zero());
/// a = a.set(complex::R|complex::I, 3_f32);
/// assert!(Nums::Complex(CNum::make(3_f32, 3_f32))==a);
/// ```
pub fn set(&self, c:u8, v:f32)->Self{
match self {
Nums::Real(re)=>Nums::Real(*re),
Nums::Complex(cnum)=>Nums::Complex(cnum.set(c, v)),
Nums::Quaternion(qnum)=>Nums::Quaternion(qnum.set(c, v))
}
}
///The method for cloning the Nums element
///
///Метод для клонирования элемента Nums
///
/// # Example
///```
/// use tmn::Nums;
/// use tmn::quaternion::QNum;
/// let a = Nums::Quaternion(QNum::make_zero());
/// let b = a.clone();
/// assert!(a==b);
/// ```
pub fn clone(&self)->Self{
match self {
Nums::Real(re) => Nums::Real(*re),
Nums::Complex(cnum)=> Nums::Complex(cnum.clone()),
Nums::Quaternion(qnum) => Nums::Quaternion(qnum.clone())
}
}
}
impl PartialEq for Nums{
fn eq(&self, other: &Self) -> bool {
match self{
Nums::Real(re)=>{
match other {
Nums::Real(re1) => re1==re,
_=>false
}
},
Nums::Complex(cnum)=>{
match other{
Nums::Complex(cnum1)=>cnum==cnum1,
_=>false
}
},
Nums::Quaternion(qnum)=>{
match other {
Nums::Quaternion(qnum1)=>qnum==qnum1,
_=>false
}
}
}
}
}
impl Add for Nums{
type Output = Nums;
///
/// The method returns the sum of two Nums elements
///
/// Метод возвращает сумму двух элементов Nums
///
/// # Examples
///```
/// use tmn::Nums;
/// use tmn::complex::CNum;
/// use tmn::quaternion::QNum;
///
/// let a = Nums::Quaternion(QNum::make_from_r(0_f32, 0_f32, 1_f32, 1_f32));
/// let b = Nums::Complex(CNum::make(1_f32, 1_f32));
///
/// let c = a+b;
/// assert!(Nums::Quaternion(QNum::make_from_r(1_f32,1_f32,1_f32,1_f32))==c);
/// ```
fn add(self, rhs: Self) -> Self::Output{
match self {
Nums::Real(re)=>{
match rhs {
Nums::Real(re1)=>Nums::Real(re + re1),
Nums::Complex(cnum) => Nums::Complex(cnum.add_r(re)),
Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.add_r(re))
}
}
Nums::Complex(cnum) =>{
match rhs {
Nums::Real(re)=> Nums::Complex(cnum.add_r(re)),
Nums::Complex(cnum1) => Nums::Complex(cnum.add_c(cnum1)),
Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.add_c(cnum.clone()))
}
},
Nums::Quaternion(qnum)=>{
match rhs {
Nums::Real(re)=> Nums::Quaternion(qnum.add_r(re)),
Nums::Complex(cnum) => Nums::Quaternion(qnum.add_c(cnum)),
Nums::Quaternion(qnum1)=> Nums::Quaternion(qnum.add_q(qnum1))
}
}
}
}
}
impl Mul for Nums{
type Output = Self;
///The method returns the product of two Nums elements
///
/// Метод возвращает произведение двух элементов Nums
///
/// # Examples
///```
/// use tmn::Nums;
/// use tmn::complex::CNum;
/// use tmn::quaternion::QNum;
///
/// let a = Nums::Quaternion(QNum::make_from_r(0_f32, 4_f32, 7_f32, 1_f32));
/// let b = Nums::Complex(CNum::make(43_f32, 2_f32));
///
/// let c = a*b;
/// assert!(Nums::Quaternion(QNum::make_from_r(-8_f32, 172_f32, 303_f32, 29_f32))==c);
/// ```
fn mul(self, rhs: Self) -> Self::Output {
match self {
Nums::Real(re)=>{
match rhs {
Nums::Real(re1)=>Nums::Real(re * re1),
Nums::Complex(cnum) => Nums::Complex(cnum.mult_r(re)),
Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.mult_r(re))
}
}
Nums::Complex(cnum) =>{
match rhs {
Nums::Real(re)=> Nums::Complex(cnum.mult_r(re)),
Nums::Complex(cnum1) => Nums::Complex(cnum.mult_c(cnum1)),
Nums::Quaternion(qnum)=> Nums::Quaternion(qnum.mult_c(cnum.clone()))
}
},
Nums::Quaternion(qnum)=>{
match rhs {
Nums::Real(re)=> Nums::Quaternion(qnum.mult_r(re)),
Nums::Complex(cnum) => Nums::Quaternion(qnum.mult_c(cnum)),
Nums::Quaternion(qnum1)=> Nums::Quaternion(qnum.mult_q(qnum1))
}
}
}
}
}
impl Neg for Nums {
type Output = Self;
///Redefined negative operator
///
///Переопределенный оператор отрицательного значения
///
/// # Example
///```
/// use tmn::Nums;
/// use tmn::quaternion::QNum;
/// let qnum = Nums::Quaternion(-QNum::make_from_r(3_f32, 4_f32, 1_f32, 2_f32));
/// assert!(qnum== Nums::Quaternion(QNum::make_from_r(-3_f32, -4_f32, -1_f32, -2_f32)));
/// ```
fn neg(self) -> Self::Output {
self.mul(Nums::Real(-1_f32))
}
}