1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
use super::{FuncAddr, GlobalAddr, LabelAddr, LocalAddr, TableAddr, TypeAddr, ValType};
use crate::{DataAddr, ElemAddr, MemAddr};

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "archive", derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize), archive(check_bytes))]
pub enum BlockArgs {
    Empty,
    Type(ValType),
    FuncType(u32),
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "archive", derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize), archive(check_bytes))]
/// A packed representation of BlockArgs
/// This is needed to keep the size of the Instruction enum small.
/// Sadly, using #[repr(u8)] on BlockArgs itself is not possible because of the FuncType variant.
pub struct BlockArgsPacked([u8; 5]); // Modifying this directly can cause runtime errors, but no UB

impl From<BlockArgs> for BlockArgsPacked {
    fn from(args: BlockArgs) -> Self {
        let mut packed = [0; 5];
        match args {
            BlockArgs::Empty => packed[0] = 0,
            BlockArgs::Type(t) => {
                packed[0] = 1;
                packed[1] = t.to_byte();
            }
            BlockArgs::FuncType(t) => {
                packed[0] = 2;
                packed[1..].copy_from_slice(&t.to_le_bytes());
            }
        }
        Self(packed)
    }
}

impl From<BlockArgsPacked> for BlockArgs {
    fn from(packed: BlockArgsPacked) -> Self {
        match packed.0[0] {
            0 => BlockArgs::Empty,
            1 => BlockArgs::Type(ValType::from_byte(packed.0[1]).unwrap()),
            2 => BlockArgs::FuncType(u32::from_le_bytes(packed.0[1..].try_into().unwrap())),
            _ => unreachable!(),
        }
    }
}

/// Represents a memory immediate in a WebAssembly memory instruction.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "archive", derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize), archive(check_bytes))]
pub struct MemoryArg {
    pub offset: u64,
    pub mem_addr: MemAddr,
}

type BrTableDefault = u32;
type BrTableLen = u32;
type EndOffset = u32;
type ElseOffset = u32;

#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "archive", derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize), archive(check_bytes))]
pub enum ConstInstruction {
    I32Const(i32),
    I64Const(i64),
    F32Const(f32),
    F64Const(f64),
    GlobalGet(GlobalAddr),
    RefNull(ValType),
    RefFunc(FuncAddr),
}

/// A WebAssembly Instruction
///
/// These are our own internal bytecode instructions so they may not match the spec exactly.
/// Wasm Bytecode can map to multiple of these instructions.
///
/// # Differences to the spec
/// * `br_table` stores the jump labels in the following `br_label` instructions to keep this enum small.
/// * Lables/Blocks: we store the label end offset in the instruction itself and use `EndBlockFrame` to mark the end of a block.
///   This makes it easier to implement the label stack iteratively.
///
/// See <https://webassembly.github.io/spec/core/binary/instructions.html>
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "archive", derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize), archive(check_bytes))]
// should be kept as small as possible (16 bytes max)
#[rustfmt::skip]
#[non_exhaustive]
pub enum Instruction {
    // > Custom Instructions
    BrLabel(LabelAddr),
    // LocalGet + I32Const + I32Add
    // One of the most common patterns in the Rust compiler output
    I32LocalGetConstAdd(LocalAddr, i32),
    // LocalGet + I32Const + I32Store => I32LocalGetConstStore + I32Const
    // Also common, helps us skip the stack entirely.
    // Has to be followed by an I32Const instruction
    I32StoreLocal { local: LocalAddr, const_i32: i32, offset: u32, mem_addr: u8 },
    // I64Xor + I64Const + I64RotL
    // Commonly used by a few crypto libraries
    I64XorConstRotl(i64),
    // LocalTee + LocalGet
    LocalTeeGet(LocalAddr, LocalAddr),
    LocalGet2(LocalAddr, LocalAddr),
    LocalGet3(LocalAddr, LocalAddr, LocalAddr),
    LocalGetSet(LocalAddr, LocalAddr),

    // > Control Instructions
    // See <https://webassembly.github.io/spec/core/binary/instructions.html#control-instructions>
    Unreachable,
    Nop,
    Block(BlockArgs, EndOffset),
    Loop(BlockArgs, EndOffset),
    If(BlockArgsPacked, ElseOffset, EndOffset), // If else offset is 0 if there is no else block
    Else(EndOffset),
    EndBlockFrame,
    Br(LabelAddr),
    BrIf(LabelAddr),
    BrTable(BrTableDefault, BrTableLen), // has to be followed by multiple BrLabel instructions
    Return,
    Call(FuncAddr),
    CallIndirect(TypeAddr, TableAddr),

    // > Parametric Instructions
    // See <https://webassembly.github.io/spec/core/binary/instructions.html#parametric-instructions>
    Drop,
    Select(Option<ValType>),

    // > Variable Instructions
    // See <https://webassembly.github.io/spec/core/binary/instructions.html#variable-instructions>
    LocalGet(LocalAddr),
    LocalSet(LocalAddr),
    LocalTee(LocalAddr),
    GlobalGet(GlobalAddr),
    GlobalSet(GlobalAddr),

    // > Memory Instructions
    I32Load { offset: u64, mem_addr: MemAddr },
    I64Load { offset: u64, mem_addr: MemAddr },
    F32Load { offset: u64, mem_addr: MemAddr },
    F64Load { offset: u64, mem_addr: MemAddr },
    I32Load8S { offset: u64, mem_addr: MemAddr },
    I32Load8U { offset: u64, mem_addr: MemAddr },
    I32Load16S { offset: u64, mem_addr: MemAddr },
    I32Load16U { offset: u64, mem_addr: MemAddr },
    I64Load8S { offset: u64, mem_addr: MemAddr },
    I64Load8U { offset: u64, mem_addr: MemAddr },
    I64Load16S { offset: u64, mem_addr: MemAddr },
    I64Load16U { offset: u64, mem_addr: MemAddr },
    I64Load32S { offset: u64, mem_addr: MemAddr },
    I64Load32U { offset: u64, mem_addr: MemAddr },
    I32Store { offset: u64, mem_addr: MemAddr },
    I64Store { offset: u64, mem_addr: MemAddr },
    F32Store { offset: u64, mem_addr: MemAddr },
    F64Store { offset: u64, mem_addr: MemAddr },
    I32Store8 { offset: u64, mem_addr: MemAddr },
    I32Store16 { offset: u64, mem_addr: MemAddr },
    I64Store8 { offset: u64, mem_addr: MemAddr },
    I64Store16 { offset: u64, mem_addr: MemAddr },
    I64Store32 { offset: u64, mem_addr: MemAddr },
    MemorySize(MemAddr, u8),
    MemoryGrow(MemAddr, u8),

    // > Constants
    I32Const(i32),
    I64Const(i64),
    F32Const(f32),
    F64Const(f64),

    // > Reference Types
    RefNull(ValType),
    RefFunc(FuncAddr),
    RefIsNull,

    // > Numeric Instructions
    // See <https://webassembly.github.io/spec/core/binary/instructions.html#numeric-instructions>
    I32Eqz, I32Eq, I32Ne, I32LtS, I32LtU, I32GtS, I32GtU, I32LeS, I32LeU, I32GeS, I32GeU,
    I64Eqz, I64Eq, I64Ne, I64LtS, I64LtU, I64GtS, I64GtU, I64LeS, I64LeU, I64GeS, I64GeU,
    // Comparisons
    F32Eq, F32Ne, F32Lt, F32Gt, F32Le, F32Ge,
    F64Eq, F64Ne, F64Lt, F64Gt, F64Le, F64Ge,
    I32Clz, I32Ctz, I32Popcnt, I32Add, I32Sub, I32Mul, I32DivS, I32DivU, I32RemS, I32RemU,
    I64Clz, I64Ctz, I64Popcnt, I64Add, I64Sub, I64Mul, I64DivS, I64DivU, I64RemS, I64RemU,
    // Bitwise
    I32And, I32Or, I32Xor, I32Shl, I32ShrS, I32ShrU, I32Rotl, I32Rotr,
    I64And, I64Or, I64Xor, I64Shl, I64ShrS, I64ShrU, I64Rotl, I64Rotr,
    // Floating Point
    F32Abs, F32Neg, F32Ceil, F32Floor, F32Trunc, F32Nearest, F32Sqrt, F32Add, F32Sub, F32Mul, F32Div, F32Min, F32Max, F32Copysign,
    F64Abs, F64Neg, F64Ceil, F64Floor, F64Trunc, F64Nearest, F64Sqrt, F64Add, F64Sub, F64Mul, F64Div, F64Min, F64Max, F64Copysign,
    I32WrapI64, I32TruncF32S, I32TruncF32U, I32TruncF64S, I32TruncF64U, I32Extend8S, I32Extend16S,
    I64Extend8S, I64Extend16S, I64Extend32S, I64ExtendI32S, I64ExtendI32U, I64TruncF32S, I64TruncF32U, I64TruncF64S, I64TruncF64U,
    F32ConvertI32S, F32ConvertI32U, F32ConvertI64S, F32ConvertI64U, F32DemoteF64,
    F64ConvertI32S, F64ConvertI32U, F64ConvertI64S, F64ConvertI64U, F64PromoteF32,
    // Reinterpretations (noops at runtime)
    I32ReinterpretF32, I64ReinterpretF64, F32ReinterpretI32, F64ReinterpretI64,
    // Saturating Float-to-Int Conversions
    I32TruncSatF32S, I32TruncSatF32U, I32TruncSatF64S, I32TruncSatF64U,
    I64TruncSatF32S, I64TruncSatF32U, I64TruncSatF64S, I64TruncSatF64U,

    // > Table Instructions
    TableInit(TableAddr, ElemAddr),
    TableGet(TableAddr),
    TableSet(TableAddr),
    TableCopy { from: TableAddr, to: TableAddr },
    TableGrow(TableAddr),
    TableSize(TableAddr),
    TableFill(TableAddr),

    // > Bulk Memory Instructions
    MemoryInit(MemAddr, DataAddr),
    MemoryCopy(MemAddr, MemAddr),
    MemoryFill(MemAddr),
    DataDrop(DataAddr),
}

#[cfg(test)]
mod test_blockargs_packed {
    use super::*;

    #[test]
    fn test_empty() {
        let packed: BlockArgsPacked = BlockArgs::Empty.into();
        assert_eq!(BlockArgs::from(packed), BlockArgs::Empty);
    }

    #[test]
    fn test_val_type_i32() {
        let packed: BlockArgsPacked = BlockArgs::Type(ValType::I32).into();
        assert_eq!(BlockArgs::from(packed), BlockArgs::Type(ValType::I32));
    }

    #[test]
    fn test_val_type_i64() {
        let packed: BlockArgsPacked = BlockArgs::Type(ValType::I64).into();
        assert_eq!(BlockArgs::from(packed), BlockArgs::Type(ValType::I64));
    }

    #[test]
    fn test_val_type_f32() {
        let packed: BlockArgsPacked = BlockArgs::Type(ValType::F32).into();
        assert_eq!(BlockArgs::from(packed), BlockArgs::Type(ValType::F32));
    }

    #[test]
    fn test_val_type_f64() {
        let packed: BlockArgsPacked = BlockArgs::Type(ValType::F64).into();
        assert_eq!(BlockArgs::from(packed), BlockArgs::Type(ValType::F64));
    }

    #[test]
    fn test_func_type() {
        let packed: BlockArgsPacked = BlockArgs::FuncType(0x12345678).into();
        assert_eq!(BlockArgs::from(packed), BlockArgs::FuncType(0x12345678));
    }
}