1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
//! Rw-lock implementation essentially copied from std.
//! Thus the license for it is this:
//! ---
//!
//! Permission is hereby granted, free of charge, to any
//! person obtaining a copy of this software and associated
//! documentation files (the "Software"), to deal in the
//! Software without restriction, including without
//! limitation the rights to use, copy, modify, merge,
//! publish, distribute, sublicense, and/or sell copies of
//! the Software, and to permit persons to whom the Software
//! is furnished to do so, subject to the following
//! conditions:
//!
//! The above copyright notice and this permission notice
//! shall be included in all copies or substantial portions
//! of the Software.
//!
//! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
//! ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
//! TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
//! PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
//! SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
//! CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
//! OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
//! IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
//! DEALINGS IN THE SOFTWARE.
//!
//! ---
use crate::sync::{futex_wait_fast, NotSend};
use core::cell::UnsafeCell;
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::ptr::NonNull;
use core::sync::atomic::AtomicU32;
use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
use rusl::futex::futex_wake;
pub struct RwLock<T: ?Sized> {
inner: InnerLock,
data: UnsafeCell<T>,
}
unsafe impl<T: ?Sized + Send> Send for RwLock<T> {}
unsafe impl<T: ?Sized + Send + Sync> Sync for RwLock<T> {}
/// RAII structure used to release the shared read access of a lock when
/// dropped.
///
/// This structure is created by the [`read`] and [`try_read`] methods on
/// [`RwLock`].
///
/// [`read`]: RwLock::read
/// [`try_read`]: RwLock::try_read
#[must_use = "if unused the RwLock will immediately unlock"]
#[clippy::has_significant_drop]
pub struct RwLockReadGuard<'a, T: ?Sized + 'a> {
// NB: we use a pointer instead of `&'a T` to avoid `noalias` violations, because a
// `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
// `NonNull` is also covariant over `T`, just like we would have with `&T`. `NonNull`
// is preferable over `const* T` to allow for niche optimization.
data: NonNull<T>,
inner_lock: &'a InnerLock,
_not_send: NotSend,
}
unsafe impl<T: ?Sized + Sync> Sync for RwLockReadGuard<'_, T> {}
impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> {
/// Create a new instance of `RwLockReadGuard<T>` from a `RwLock<T>`.
// SAFETY: if and only if `lock.inner.read()` (or `lock.inner.try_read()`) has been
// successfully called from the same thread before instantiating this object.
unsafe fn new(lock: &'rwlock RwLock<T>) -> RwLockReadGuard<'rwlock, T> {
RwLockReadGuard {
data: NonNull::new_unchecked(lock.data.get()),
inner_lock: &lock.inner,
_not_send: NotSend::new(),
}
}
}
#[must_use = "if unused the RwLock will immediately unlock"]
#[clippy::has_significant_drop]
pub struct RwLockWriteGuard<'a, T: ?Sized + 'a> {
lock: &'a RwLock<T>,
_not_send: NotSend,
}
unsafe impl<T: ?Sized + Sync> Sync for RwLockWriteGuard<'_, T> {}
impl<'rwlock, T: ?Sized> RwLockWriteGuard<'rwlock, T> {
/// Create a new instance of `RwLockWriteGuard<T>` from a `RwLock<T>`.
// SAFETY: if and only if `lock.inner.write()` (or `lock.inner.try_write()`) has been
// successfully called from the same thread before instantiating this object.
unsafe fn new(lock: &'rwlock RwLock<T>) -> RwLockWriteGuard<'rwlock, T> {
RwLockWriteGuard {
lock,
_not_send: NotSend::new(),
}
}
}
impl<T> RwLock<T> {
#[inline]
pub const fn new(t: T) -> RwLock<T> {
RwLock {
inner: InnerLock::new(),
data: UnsafeCell::new(t),
}
}
}
impl<T: ?Sized> RwLock<T> {
#[inline]
pub fn read(&self) -> RwLockReadGuard<'_, T> {
unsafe {
self.inner.read();
RwLockReadGuard::new(self)
}
}
#[inline]
pub fn try_read(&self) -> Option<RwLockReadGuard<'_, T>> {
unsafe { self.inner.try_read().then(|| RwLockReadGuard::new(self)) }
}
#[inline]
pub fn write(&self) -> RwLockWriteGuard<'_, T> {
unsafe {
self.inner.write();
RwLockWriteGuard::new(self)
}
}
#[inline]
pub fn try_write(&self) -> Option<RwLockWriteGuard<'_, T>> {
unsafe { self.inner.try_write().then(|| RwLockWriteGuard::new(self)) }
}
pub fn into_inner(self) -> T
where
T: Sized,
{
self.data.into_inner()
}
pub fn get_mut(&mut self) -> &mut T {
self.data.get_mut()
}
}
struct InnerLock {
state: AtomicU32,
writer_notify: AtomicU32,
}
const READ_LOCKED: u32 = 1;
const MASK: u32 = (1 << 30) - 1;
const WRITE_LOCKED: u32 = MASK;
const MAX_READERS: u32 = MASK - 1;
const READERS_WAITING: u32 = 1 << 30;
const WRITERS_WAITING: u32 = 1 << 31;
#[inline]
fn is_unlocked(state: u32) -> bool {
state & MASK == 0
}
#[inline]
fn is_write_locked(state: u32) -> bool {
state & MASK == WRITE_LOCKED
}
#[inline]
fn has_readers_waiting(state: u32) -> bool {
state & READERS_WAITING != 0
}
#[inline]
fn has_writers_waiting(state: u32) -> bool {
state & WRITERS_WAITING != 0
}
#[inline]
fn is_read_lockable(state: u32) -> bool {
// This also returns false if the counter could overflow if we tried to read lock it.
//
// We don't allow read-locking if there's readers waiting, even if the lock is unlocked
// and there's no writers waiting. The only situation when this happens is after unlocking,
// at which point the unlocking thread might be waking up writers, which have priority over readers.
// The unlocking thread will clear the readers waiting bit and wake up readers, if necessary.
state & MASK < MAX_READERS && !has_readers_waiting(state) && !has_writers_waiting(state)
}
#[inline]
fn has_reached_max_readers(state: u32) -> bool {
state & MASK == MAX_READERS
}
impl InnerLock {
#[inline]
pub const fn new() -> Self {
Self {
state: AtomicU32::new(0),
writer_notify: AtomicU32::new(0),
}
}
#[inline]
pub fn try_read(&self) -> bool {
self.state
.fetch_update(Acquire, Relaxed, |s| {
is_read_lockable(s).then_some(s + READ_LOCKED)
})
.is_ok()
}
#[inline]
pub fn read(&self) {
let state = self.state.load(Relaxed);
if !is_read_lockable(state)
|| self
.state
.compare_exchange_weak(state, state + READ_LOCKED, Acquire, Relaxed)
.is_err()
{
self.read_contended();
}
}
#[inline]
pub unsafe fn read_unlock(&self) {
let state = self.state.fetch_sub(READ_LOCKED, Release) - READ_LOCKED;
// It's impossible for a reader to be waiting on a read-locked RwLock,
// except if there is also a writer waiting.
debug_assert!(!has_readers_waiting(state) || has_writers_waiting(state));
// Wake up a writer if we were the last reader and there's a writer waiting.
if is_unlocked(state) && has_writers_waiting(state) {
self.wake_writer_or_readers(state);
}
}
#[cold]
fn read_contended(&self) {
let mut state = self.spin_read();
loop {
// If we can lock it, lock it.
if is_read_lockable(state) {
match self
.state
.compare_exchange_weak(state, state + READ_LOCKED, Acquire, Relaxed)
{
Ok(_) => return, // Locked!
Err(s) => {
state = s;
continue;
}
}
}
// Check for overflow.
assert!(
!has_reached_max_readers(state),
"too many active read locks on RwLock"
);
// Make sure the readers waiting bit is set before we go to sleep.
if !has_readers_waiting(state) {
if let Err(s) =
self.state
.compare_exchange(state, state | READERS_WAITING, Relaxed, Relaxed)
{
state = s;
continue;
}
}
// Wait for the state to change.
futex_wait_fast(&self.state, state | READERS_WAITING);
// Spin again after waking up.
state = self.spin_read();
}
}
#[inline]
pub fn try_write(&self) -> bool {
self.state
.fetch_update(Acquire, Relaxed, |s| {
is_unlocked(s).then_some(s + WRITE_LOCKED)
})
.is_ok()
}
#[inline]
pub fn write(&self) {
if self
.state
.compare_exchange_weak(0, WRITE_LOCKED, Acquire, Relaxed)
.is_err()
{
self.write_contended();
}
}
#[inline]
pub unsafe fn write_unlock(&self) {
let state = self.state.fetch_sub(WRITE_LOCKED, Release) - WRITE_LOCKED;
debug_assert!(is_unlocked(state));
if has_writers_waiting(state) || has_readers_waiting(state) {
self.wake_writer_or_readers(state);
}
}
#[cold]
fn write_contended(&self) {
let mut state = self.spin_write();
let mut other_writers_waiting = 0;
loop {
// If it's unlocked, we try to lock it.
if is_unlocked(state) {
match self.state.compare_exchange_weak(
state,
state | WRITE_LOCKED | other_writers_waiting,
Acquire,
Relaxed,
) {
Ok(_) => return, // Locked!
Err(s) => {
state = s;
continue;
}
}
}
// Set the waiting bit indicating that we're waiting on it.
if !has_writers_waiting(state) {
if let Err(s) =
self.state
.compare_exchange(state, state | WRITERS_WAITING, Relaxed, Relaxed)
{
state = s;
continue;
}
}
// Other writers might be waiting now too, so we should make sure
// we keep that bit on once we manage lock it.
other_writers_waiting = WRITERS_WAITING;
// Examine the notification counter before we check if `state` has changed,
// to make sure we don't miss any notifications.
let seq = self.writer_notify.load(Acquire);
// Don't go to sleep if the lock has become available,
// or if the writers waiting bit is no longer set.
state = self.state.load(Relaxed);
if is_unlocked(state) || !has_writers_waiting(state) {
continue;
}
// Wait for the state to change.
futex_wait_fast(&self.writer_notify, seq);
// Spin again after waking up.
state = self.spin_write();
}
}
/// Wake up waiting threads after unlocking.
///
/// If both are waiting, this will wake up only one writer, but will fall
/// back to waking up readers if there was no writer to wake up.
#[cold]
fn wake_writer_or_readers(&self, mut state: u32) {
assert!(is_unlocked(state));
// The readers waiting bit might be turned on at any point now,
// since readers will block when there's anything waiting.
// Writers will just lock the lock though, regardless of the waiting bits,
// so we don't have to worry about the writer waiting bit.
//
// If the lock gets locked in the meantime, we don't have to do
// anything, because then the thread that locked the lock will take
// care of waking up waiters when it unlocks.
// If only writers are waiting, wake one of them up.
if state == WRITERS_WAITING {
match self.state.compare_exchange(state, 0, Relaxed, Relaxed) {
Ok(_) => {
self.wake_writer();
return;
}
Err(s) => {
// Maybe some readers are now waiting too. So, continue to the next `if`.
state = s;
}
}
}
// If both writers and readers are waiting, leave the readers waiting
// and only wake up one writer.
if state == READERS_WAITING + WRITERS_WAITING {
if self
.state
.compare_exchange(state, READERS_WAITING, Relaxed, Relaxed)
.is_err()
{
// The lock got locked. Not our problem anymore.
return;
}
if self.wake_writer() {
return;
}
// No writers were actually blocked on futex_wait, so we continue
// to wake up readers instead, since we can't be sure if we notified a writer.
state = READERS_WAITING;
}
// If readers are waiting, wake them all up.
if state == READERS_WAITING
&& self
.state
.compare_exchange(state, 0, Relaxed, Relaxed)
.is_ok()
{
let _ = futex_wake(&self.state, i32::MAX);
}
}
fn wake_writer(&self) -> bool {
self.writer_notify.fetch_add(1, Release);
futex_wake(&self.writer_notify, 1).unwrap() != 0
// Note that FreeBSD and DragonFlyBSD don't tell us whether they woke
// up any threads or not, and always return `false` here. That still
// results in correct behaviour: it just means readers get woken up as
// well in case both readers and writers were waiting.
}
#[inline]
fn spin_until(&self, f: impl Fn(u32) -> bool) -> u32 {
let mut spin = 100; // Chosen by fair dice roll.
loop {
let state = self.state.load(Relaxed);
if f(state) || spin == 0 {
return state;
}
core::hint::spin_loop();
spin -= 1;
}
}
#[inline]
fn spin_write(&self) -> u32 {
// Stop spinning when it's unlocked or when there's waiting writers, to keep things somewhat fair.
self.spin_until(|state| is_unlocked(state) || has_writers_waiting(state))
}
#[inline]
fn spin_read(&self) -> u32 {
// Stop spinning when it's unlocked or read locked, or when there's waiting threads.
self.spin_until(|state| {
!is_write_locked(state) || has_readers_waiting(state) || has_writers_waiting(state)
})
}
}
impl<T: fmt::Debug> fmt::Debug for RwLockReadGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: fmt::Debug> fmt::Debug for RwLockWriteGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: ?Sized + fmt::Display> fmt::Display for RwLockWriteGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T: ?Sized> Deref for RwLockReadGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
// SAFETY: the conditions of `RwLockGuard::new` were satisfied when created.
unsafe { self.data.as_ref() }
}
}
impl<T: ?Sized> Deref for RwLockWriteGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
// SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when created.
unsafe { &*self.lock.data.get() }
}
}
impl<T: ?Sized> DerefMut for RwLockWriteGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
// SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when created.
unsafe { &mut *self.lock.data.get() }
}
}
impl<T: ?Sized> Drop for RwLockReadGuard<'_, T> {
fn drop(&mut self) {
// SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when created.
unsafe {
self.inner_lock.read_unlock();
}
}
}
impl<T: ?Sized> Drop for RwLockWriteGuard<'_, T> {
fn drop(&mut self) {
// SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when created.
unsafe {
self.lock.inner.write_unlock();
}
}
}
#[cfg(test)]
mod tests {
use crate::sync::RwLock;
use core::time::Duration;
#[test]
fn can_lock() {
let rw = std::sync::Arc::new(super::RwLock::new(0));
let rw_c = rw.clone();
let mut guard = rw.write();
let res = std::thread::spawn(move || *rw_c.read());
*guard = 15;
drop(guard);
let thread_res = res.join().unwrap();
assert_eq!(15, thread_res);
}
#[test]
fn can_mutex_contended() {
const NUM_THREADS: usize = 32;
let count = std::sync::Arc::new(RwLock::new(0));
let mut handles = std::vec::Vec::new();
for _i in 0..NUM_THREADS {
let count_c = count.clone();
let handle = std::thread::spawn(move || {
// Try to create some contention
let mut w_guard = count_c.write();
let orig = *w_guard;
std::thread::sleep(Duration::from_millis(1));
*w_guard += 1;
drop(w_guard);
std::thread::sleep(Duration::from_millis(1));
let r_guard = count_c.read();
std::thread::sleep(Duration::from_millis(1));
// We incremented this
assert!(*r_guard > orig);
});
handles.push(handle);
}
for h in handles {
h.join().unwrap();
}
assert_eq!(NUM_THREADS, *count.read());
}
#[test]
fn can_try_rw_single_thread_contended() {
let rw = std::sync::Arc::new(super::RwLock::new(0));
let rw_c = rw.clone();
assert_eq!(0, *rw_c.try_read().unwrap());
let r_guard = rw.read();
assert_eq!(0, *rw_c.try_read().unwrap());
assert!(rw_c.try_write().is_none());
drop(r_guard);
assert_eq!(0, *rw_c.try_write().unwrap());
let _w_guard = rw.write();
assert!(rw_c.try_read().is_none());
}
}