1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
use crate::error::Result;
use crate::fs::File;
use crate::io::Read;
use rusl::error::Errno;
/// Fills the provided buffer with random bytes from /dev/random.
/// # Errors
/// File permissions failure
pub fn system_random(buf: &mut [u8]) -> Result<()> {
let mut file = File::open("/dev/random\0")?;
let mut offset = 0;
while offset < buf.len() {
match file.read(&mut buf[offset..]) {
Ok(read) => {
offset += read;
}
Err(e) => {
if e.matches_errno(Errno::EINTR) {
continue;
}
return Err(e);
}
}
}
Ok(())
}
/// A small, basic [PRNG](https://en.wikipedia.org/wiki/Pseudorandom_number_generator)
/// implemented as an [LCG](https://en.wikipedia.org/wiki/Linear_congruential_generator).
/// Should never be used for security-critical things, but can be used as a high-performance
/// source of pseudo-randomness.
/// For secure randoms [`system_random`] is more appropriate.
pub struct Prng {
seed: u64,
}
impl Prng {
/// Choosing same constants as glibc here.
/// [LCG](https://en.wikipedia.org/wiki/Linear_congruential_generator)
/// Yanked my implementation from [tiny-bench, license here](https://github.com/EmbarkStudios/tiny-bench/blob/main/LICENSE-MIT)
const MOD: u128 = 2u128.pow(48);
const A: u128 = 25_214_903_917;
const C: u128 = 11;
/// Create a new Prng-instance seeding with a `MonotonicInstant`, this is fine because
/// you shouldn't need a secure seed anyway, because you should not use this for
/// security-purposes at all.
#[must_use]
#[allow(clippy::cast_sign_loss)]
pub fn new_time_seeded() -> Self {
let time = crate::time::MonotonicInstant::now();
let time_nanos_in_u64 = (time.0.seconds() as u64)
.overflowing_add(time.0.nanoseconds() as u64)
.0;
Prng {
seed: time_nanos_in_u64,
}
}
/// Create a new prng-instance with the provided seed
#[inline]
#[must_use]
pub fn new(seed: u64) -> Self {
Prng {
// And maybe check for overflows. Note: No we're good until about year 2554
seed,
}
}
pub fn next_u64(&mut self) -> u64 {
self.seed = ((Self::A * u128::from(self.seed) + Self::C) % Self::MOD) as u64;
self.seed
}
}
impl Iterator for Prng {
type Item = u64;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
Some(self.next_u64())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn gets_random() {
let mut buf = [0u8; 4096];
system_random(&mut buf).unwrap();
// Likely outcome is 16 around zeroes
let mut count_zero = 0;
for i in buf {
if i == 0 {
count_zero += 1;
}
}
// Could calculate the actual probability for this.
assert!(count_zero < 32, "After filling a buf with random bytes {count_zero} zeroes were found, should be around 16.");
}
#[test]
fn gets_pseudo_random() {
let mut count_zero = 0;
let prng = Prng::new(55);
for val in prng.take(4096) {
if val == 0 {
count_zero += val;
}
}
// Sweet determinism
assert_eq!(0, count_zero);
}
}