1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

//! ## Tiny RNG, a minimal random number generator
//! Warning: Not cryptographically secure.

#![cfg_attr(not(test), no_std)]

pub trait Rand {
    fn from_seed(seed: u64) -> Self;
    fn rand_u32(&mut self) -> u32;

    #[inline]
    fn rand_u8(&mut self) -> u8 {
        self.rand_u32() as u8
    }

    #[inline]
    fn rand_u16(&mut self) -> u16 {
        self.rand_u32() as u16
    }

    #[inline]
    fn rand_u64(&mut self) -> u64 {
        (self.rand_u32() as u64) << 32 | (self.rand_u32() as u64)
    }

    #[cfg(target_pointer_width = "32")]
    #[inline]
    fn rand_usize(&mut self) -> usize {
        self.rand_u32() as usize
    }

    #[cfg(target_pointer_width = "64")]
    #[inline]
    fn rand_usize(&mut self) -> usize {
        self.rand_u64() as usize
    }

    // Algorithm to generate an equidistributed random number in 0..m.
    // Applies the idea of rejection sampling.
    fn rand_bounded_u32(&mut self, m: u32) -> u32 {
        let threshold = m.wrapping_neg().wrapping_rem(m);
        loop {
            let r = self.rand_u32();
            if r >= threshold {
                return r.wrapping_rem(m);
            }
        }
    }

    fn rand_bounded_u64(&mut self, m: u64) -> u64 {
        let threshold = m.wrapping_neg().wrapping_rem(m);
        loop {
            let r = self.rand_u64();
            if r >= threshold {
                return r.wrapping_rem(m);
            }
        }
    }

    #[cfg(target_pointer_width = "32")]
    fn rand_bounded_usize(&mut self, m: usize) -> usize {
        self.rand_bounded_u32(m as u32) as usize
    }

    #[cfg(target_pointer_width = "64")]
    fn rand_bounded_usize(&mut self, m: usize) -> usize {
        self.rand_bounded_u64(m as u64) as usize
    }

    fn rand_range_u32(&mut self, a: u32, b: u32) -> u32 {
       a + self.rand_bounded_u32(b-a)
    }
    fn rand_range_u64(&mut self, a: u64, b: u64) -> u64 {
       a + self.rand_bounded_u64(b-a)
    }
    fn rand_range_i32(&mut self, a: i32, b: i32) -> i32 {
        a + self.rand_bounded_u32((b-a) as u32) as i32
    }
    fn rand_range_i64(&mut self, a: i64, b: i64) -> i64 {
        a + self.rand_bounded_u64((b-a) as u64) as i64
    }

    fn rand_f32(&mut self) -> f32 {
        self.rand_u32() as f32 * 2.3283064E-10
    }

    fn rand_f64(&mut self) -> f64 {
        self.rand_u32() as f64 * 2.3283064365386963E-10
    }

    fn shuffle<T>(&mut self, a: &mut [T]) {
        if a.is_empty() {return;}
        let mut i = a.len() - 1;
        while i > 0 {
            let j = self.rand_usize()%(i + 1);
            a.swap(i, j);
            i -= 1;
        }
    }

    fn fill(&mut self, a: &mut[u8]) {
        let mut x = self.rand_u32();
        let mut count = 3;
        for p in a {
            *p = x as u8;
            if count == 0 {
                x = self.rand_u32();
                count = 3;
            } else {
                x  >>= 8;
                count -= 1;
            }
        }
    }
}

pub fn rand_iter<'a, T: 'static, Generator: Rand>(
    rng: &'a mut Generator,
    rand: fn(&mut Generator) -> T
) -> impl 'a + Iterator<Item = T>
{
    core::iter::from_fn(move || Some(rand(rng)))
}

/*
Xorshift128+ is a modern algorithm for the fast generation of random
numbers of relatively high quality, which passes the most important
statistical tests. The generator is said to have a period length of
2^128-1 and to pass "BigCrush" from the test suite "TestU01". It should
be noted that this is by no means a cryptographic generator. The
following implementation is as described in [Vigna], with the
assignment a=23, b=17, c=26 described there as favorable, and is
also listed that way in the Firefox source code [1] and in
Wikipedia [2][3]. The internal state state may be arbitrary,
but not (0, 0).

Since the low-order 32 bits of a random value of Xorshift128+ are not
supposed to pass some statistical tests, it is better to extract
the high-order 32 bits for rand_u32.

[Vigna] Sebastiano Vigna: "Further scramblings of Marsaglia's
xorshift generators".
Journal of Computational and Applied Mathematics (Mai 2017).
arXiv:1404.0390. doi:10.1016/j.cam.2016.11.006.
https://arxiv.org/abs/1404.0390

[1] mfbt/XorShift128PlusRNG.h, retrieved 8 Feb. 2020.
https://github.com/mozilla/gecko-dev/blob/master/mfbt/XorShift128PlusRNG.h
-- Gecko is the current engine of Firefox.

[2] Xorshift. English Wikipedia, retrieved 8 Feb. 2020.
https://en.wikipedia.org/wiki/Xorshift

[3] Xorshift. German Wikipedia, retrievend 8 Feb. 2020.
https://de.wikipedia.org/wiki/Xorshift.
*/

pub struct Rng {
    state: (u64, u64)
}

impl Rand for Rng {
    fn from_seed(seed: u64) -> Self {
        Self {state: (
            seed ^ 0xf4dbdf2183dcefb7, // [crc32(b"0"), crc32(b"1")]
            seed ^ 0x1ad5be0d6dd28e9b  // [crc32(b"2"), crc32(b"3")]
        )}
    }

    fn rand_u64(&mut self) -> u64 {
        let (mut x, y) = self.state;
        self.state.0 = y;
        x ^= x << 23;
        self.state.1 = x ^ y ^ (x >> 17) ^ (y >> 26);
        self.state.1.wrapping_add(y)
    }

    #[inline]
    fn rand_u32(&mut self) -> u32 {
        (self.rand_u64() >> 32) as u32
    }
}

impl Rng {
    pub fn iter<'a, T: 'static>(&'a mut self, rand: fn(&mut Self) -> T)
    -> impl 'a + Iterator<Item = T>
    {
        rand_iter(self, rand)
    }
}

#[cfg(test)]
mod tests {
    use crate::{Rng, Rand};

    fn rng_test<Generator: Rand>() {
        let mut rng = Generator::from_seed(0);
        println!("{:?}", rng.rand_range_u32(1, 6));
    }

    #[test]
    fn main() {
        rng_test::<Rng>();
    }
}