1use tiny_ml::prelude::*;
2
3fn main() {
4 let mut net = NeuralNetwork::new().add_layer(1, ActivationFunction::Linear);
6
7 let mut inputs = vec![];
9 let mut outputs = vec![];
10 for i in -50..50 {
11 inputs.push([i as f32]);
12 outputs.push([i as f32 * 3.0]);
13 }
14 let data = DataSet { inputs, outputs };
15
16 let trainer = BasicTrainer::new(data);
17
18 for _ in 0..10 {
20 trainer.train(&mut net, 10);
21 println!("{}", trainer.get_total_error(&net))
23 }
24
25 println!("########");
27 for i in -5..5 {
28 println!("{}", &net.run(&[i as f32 + 0.5])[0]);
29 }
30}