1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
//!
//! Have you ever being placing closure into [`Box<dyn Fn(...)>`] and wondered:
//! "Is there a crate to avoid heap allocations for small closures?"
//!
//! Wonder no more, this is the crate.
//!
//! # How to use
//!
//! This crate provides declarative macro [`tiny_fn!`] to generate closure wrappers
//! able store closure erasing its type.
//!
//! Generated closure wrappers avoid heap allocations when wrapped closure fits inline storage.
//!
//! The macro is designed to be easy to write with simple syntax that mostly reuse constructs already existing in Rust.\
//! Behavior of generated wrappers should be obvious from the first glance.
//!
//! # Example
//!
//! ```
//! # use tiny_fn::tiny_fn;
//! tiny_fn! {
//! struct Foo = Fn(a: i32, b: i32) -> i32;
//! }
//! ```
//!
//! Macro expands to `struct Foo` definition with two public methods.
//!
//! * `Foo::new` accepts any value that implements [`Fn(i32, i32) -> i32`] and returns new instance of `Foo`.
//! * `Foo::call` follows signature specified to the macro. e.g. `Foo::call` accepts `a: i32` and `b: i32` and returns [`i32`].\
//! Plainly `Foo::call` calls closure from which this instance of `Foo` was crated using `a` and `b` arguments at the same positions.
//!
//! [`tiny_fn!`] macro supports defining multiple items at once.
//!
//! ```
//! # use tiny_fn::tiny_fn;
//! tiny_fn! {
//! struct Foo = Fn(a: i32, b: i32) -> i32;
//! struct Bar = Fn() -> String;
//! }
//! ```
//!
//! # Visibility
//!
//! [`tiny_fn!`] macro supports visibility qualifiers.
//!
//!
//! ```
//! # use tiny_fn::tiny_fn;
//! tiny_fn! {
//! pub struct Foo = Fn(a: i32, b: i32) -> i32;
//! struct Bar = Fn() -> String;
//! pub(crate) struct Baz = Fn();
//! }
//! ```
//!
//! # Attributes
//!
//! [`tiny_fn!`] macro supports item attributes, including documentation.
//!
//! ```
//! # use tiny_fn::tiny_fn;
//! tiny_fn! {
//! /// This is `Foo` wrapper for that takes two `i32`s and return `i32`.
//! pub struct Foo = Fn(a: i32, b: i32) -> i32;
//! }
//! ```
//!
//! # [`Fn*`] traits family
//!
//! [`tiny_fn!`] macro can generate closure wrappers for any of the [`Fn*`] traits family.
//!
//! ```
//! # use tiny_fn::tiny_fn;
//! tiny_fn! {
//! struct A = Fn();
//! struct B = FnMut();
//! struct C = FnOnce();
//! }
//! ```
//!
//! * `A` can wrap only closures that are callable when immutably borrowed. And so `A::call` takes `&self`.
//! * `B` can wrap only closures that are callable when borrowed. And so `B::call` takes `&mut self`.
//! * `C` can wrap any closures, even ones that are callable once. And so `C::call` takes `self`.
//!
//! # Generics
//!
//! Closure wrappers can be declared generic over number of types and those types should be used in function signature.
//!
//! ```
//! # use tiny_fn::tiny_fn;
//! tiny_fn! {
//! struct BinOp<T> = Fn(a: T, b: T) -> T;
//! }
//! ```
//!
//! Here `BinOp` is generic over `T`.\
//! `BiOp::<T>::new` accepts closures bounds by [`Fn(T, T) -> T`].
//!
//! Notably `T` is not constrained by traits in `BinOp`.\
//! Closure wrappers only move arguments and return values, so they don't need to know anything else about the type.
//!
//! # Special generic parameters
//!
//! Closure wrapper generated by [`tiny_fn!`] macro always have two generic parameters besides generic types specified by macro caller:
//! * Lifetime `'closure`.\
//! Wrapper contains closures bound by `'closure` lifetime.
//! * Constant `INLINE_SIZE: usize`.\
//! Closures with size up to `INLINE_SIZE` and alignment requirement not exceeding [`tiny_fn::ALIGN`] will be inlined into wrapper structure directly.\
//! Otherwise heap allocation will occur.\
//! `INLINE_SIZE` parameter is defaulted to [`tiny_fn::DEFAULT_INLINE_SIZE`].
//!
//! [`Box<dyn Fn(...)>`]: https://doc.rust-lang.org/std/ops/trait.Fn.html
//! [`Fn(i32, i32) -> i32`]: https://doc.rust-lang.org/std/ops/trait.Fn.html
//! [`Fn*`]: https://doc.rust-lang.org/std/ops/trait.Fn.html
//! [`Fn(T, T) -> T`]: https://doc.rust-lang.org/std/ops/trait.Fn.html
//! [`tiny_fn::ALIGN`]: `ALIGN`
//! [`tiny_fn::DEFAULT_INLINE_SIZE`]: `DEFAULT_INLINE_SIZE`
#![no_std]
extern crate alloc;
/// Inline storage alignment.
/// Closures with stricter alignment requirements will be heap allocated by wrapper
/// even if size fits.
pub const ALIGN: usize = core::mem::align_of::<crate::private::InlineStorage<1>>();
/// Default value for `INLINE_SIZE` parameter of closure wrappers generated by [`tiny_fn!`] macro.
pub const DEFAULT_INLINE_SIZE: usize = 24;
/// Content of this module is not public API.
/// It is used by macro output.
#[doc(hidden)]
pub mod private {
pub use alloc::boxed::Box;
pub use core::{
mem::{align_of, size_of, transmute, ManuallyDrop},
ptr::{copy_nonoverlapping, drop_in_place, read, NonNull},
};
pub trait Closure {
type Inner;
}
pub struct VTable<D, C> {
pub drop: D,
pub call: C,
}
#[repr(align(16))]
pub struct InlineStorage<const INLINE_SIZE: usize> {
pub bytes: [u8; INLINE_SIZE],
}
pub type DropFn<const INLINE_SIZE: usize> = unsafe fn(core::ptr::NonNull<[u8; INLINE_SIZE]>);
#[repr(C)]
pub struct InlineFn<const INLINE_SIZE: usize> {
pub vtable: &'static VTable<DropFn<INLINE_SIZE>, DropFn<INLINE_SIZE>>,
pub storage: InlineStorage<INLINE_SIZE>,
}
impl<const INLINE_SIZE: usize> Drop for InlineFn<INLINE_SIZE> {
fn drop(&mut self) {
unsafe {
let drop_fn = self.vtable.drop;
(drop_fn)(core::ptr::NonNull::from(&mut self.storage.bytes));
}
}
}
}
#[doc(hidden)]
#[macro_export]
macro_rules! private_tiny_fn {
(@call Fn $(< $($t:ident),+ >)? ($($arg_name:ident: $arg_type:ty),* $(,)?) $( -> $ret:ty)?) => {
pub fn call(&self, $($arg_name: $arg_type),*) $(-> $ret)? {
unsafe {
if self.boxed_if_zero == 0 {
(*self.boxed.closure)($($arg_name),*)
} else {
let call_fn: unsafe fn($crate::private::NonNull<[u8; INLINE_SIZE]>, $($arg_type),*) $( -> $ret)? = $crate::private::transmute(self.inline.vtable.call);
call_fn(
$crate::private::NonNull::from(&self.inline.storage.bytes),
$($arg_name),*
)
}
}
}
};
(@call FnMut $(< $($t:ident),+ >)? ($($arg_name:ident: $arg_type:ty),* $(,)?) $( -> $ret:ty)?) => {
pub fn call(&mut self, $($arg_name: $arg_type),*) $(-> $ret)? {
unsafe {
if self.boxed_if_zero == 0 {
(*(*self.boxed).closure)($($arg_name),*)
} else {
let call_fn: unsafe fn($crate::private::NonNull<[u8; INLINE_SIZE]>, $($arg_type),*) $( -> $ret)? = $crate::private::transmute(self.inline.vtable.call);
call_fn(
$crate::private::NonNull::from(&mut (*self.inline).storage.bytes),
$($arg_name),*
)
}
}
}
};
(@call FnOnce $(< $($t:ident),+ >)? ($($arg_name:ident: $arg_type:ty),* $(,)?) $( -> $ret:ty)?) => {
pub fn call(self, $($arg_name: $arg_type),*) $(-> $ret)? {
let mut me = $crate::private::ManuallyDrop::new(self);
unsafe {
if me.boxed_if_zero == 0 {
($crate::private::ManuallyDrop::take(&mut me.boxed).closure)($($arg_name),*)
} else {
let call_fn: CallFn< $($($t,)+)? INLINE_SIZE> = $crate::private::transmute(me.inline.vtable.call);
call_fn(
$crate::private::NonNull::from(&mut (*(*me).inline).storage.bytes),
$($arg_name),*
)
}
}
}
};
(@call_outer Fn $(< $($t:ident),+ >)? ($($arg_name:ident: $arg_type:ty),* $(,)?) $( -> $ret:ty)?) => {
/// Calls wrapped closure
/// and returns it result.
#[allow(dead_code)]
pub fn call(&self, $($arg_name: $arg_type),*) $(-> $ret)? {
self.inner.call($($arg_name,)*)
}
};
(@call_outer FnMut $(< $($t:ident),+ >)? ($($arg_name:ident: $arg_type:ty),* $(,)?) $( -> $ret:ty)?) => {
/// Calls wrapped closure
/// and returns it result.
#[allow(dead_code)]
pub fn call(&mut self, $($arg_name: $arg_type),*) $(-> $ret)? {
self.inner.call($($arg_name,)*)
}
};
(@call_outer FnOnce $(< $($t:ident),+ >)? ($($arg_name:ident: $arg_type:ty),* $(,)?) $( -> $ret:ty)?) => {
/// Calls wrapped closure
/// and returns it result.
#[allow(dead_code)]
pub fn call(self, $($arg_name: $arg_type),*) $(-> $ret)? {
self.inner.call($($arg_name,)*)
}
};
(@inline_call_cast Fn $ptr:ident) => {
(*$ptr.cast::<F>().as_ptr())
};
(@inline_call_cast FnMut $ptr:ident) => {
(*$ptr.cast::<F>().as_ptr())
};
(@inline_call_cast FnOnce $ptr:ident) => {
$crate::private::read($ptr.cast::<F>().as_ptr())
};
}
/// Defines new structure type.
/// This type will be constructible from any closure
/// that implement specified [`Fn*`] trait.
/// Closures that fits into inline storage will be placed there.
/// Otherwise closure will be boxed.
/// And it will have `call` method with the same signature as the closure.
///
/// Defined type can have generic parameters that can be used in function signature.
/// It will always have additional `const INLINE_SIZE: usize` generic parameter,
/// that controls size of the inline storage. Alignment of the inline storage is hardcoded to 16
/// which is enough for any primitive type and thus fits most of the types.
///
/// [`Fn*`]: https://doc.rust-lang.org/std/ops/trait.Fn.html
#[macro_export]
macro_rules! tiny_fn {
($(
$(#[$meta:meta])*
$vis:vis struct $name:ident $(< $($t:ident),+ >)? =
$fun:ident ($(
$arg_name:ident: $arg_type:ty
),* $(,)?)
$( -> $ret:ty)?;
)*) => {
$(
const _: () = {
type CallFn< $($($t, )+)? const INLINE_SIZE: usize> = unsafe fn($crate::private::NonNull<[u8; INLINE_SIZE]>, $($arg_type),*) $( -> $ret)?;
#[repr(C)]
struct BoxedFn <'closure $($(, $t)+)?> {
zero: usize,
closure: $crate::private::Box<dyn $fun($($arg_type),*) $(-> $ret)? + 'closure>,
}
#[doc(hidden)]
pub union TinyClosure<'closure, $($($t,)+)? const INLINE_SIZE: usize> {
inline: $crate::private::ManuallyDrop<$crate::private::InlineFn<INLINE_SIZE>>,
boxed: $crate::private::ManuallyDrop<BoxedFn<'closure $($(, $t)+)?>>,
boxed_if_zero: usize,
}
impl<'closure, $($($t,)+)? const INLINE_SIZE: usize> Drop for TinyClosure<'closure, $($($t,)+)? INLINE_SIZE> {
fn drop(&mut self) {
unsafe {
if self.boxed_if_zero == 0 {
$crate::private::ManuallyDrop::drop(&mut self.boxed);
return;
} else {
$crate::private::ManuallyDrop::drop(&mut self.inline);
}
}
}
}
impl<'closure, $($($t,)+)? const INLINE_SIZE: usize> TinyClosure<'closure, $($($t,)+)? INLINE_SIZE> {
fn new<F>(f: F) -> Self
where
F: $fun ($($arg_type),*) $( -> $ret)? + 'closure,
{
let size_fits = $crate::private::size_of::<F>() <= INLINE_SIZE;
let align_fits = $crate::private::align_of::<F>() <= $crate::ALIGN;
if size_fits && align_fits {
let mut storage = $crate::private::InlineStorage {
bytes: [0; INLINE_SIZE],
};
let f = $crate::private::ManuallyDrop::new(f);
unsafe {
$crate::private::copy_nonoverlapping(
&*f as *const F as *const u8,
storage.bytes.as_mut_ptr(),
$crate::private::size_of::<F>(),
);
}
let inline_fn = $crate::private::InlineFn {
vtable: unsafe {
$crate::private::transmute(&$crate::private::VTable::< $crate::private::DropFn<INLINE_SIZE>, CallFn< $($($t,)+)? INLINE_SIZE>> {
drop: |ptr: $crate::private::NonNull<[u8; INLINE_SIZE]>| {
$crate::private::drop_in_place(ptr.cast::<F>().as_ptr());
},
call: |ptr: $crate::private::NonNull<[u8; INLINE_SIZE]> $(, $arg_name: $arg_type)*| $(-> $ret)? {
$crate::private_tiny_fn!(@inline_call_cast $fun ptr)($($arg_name),*)
},
})
},
storage,
};
TinyClosure {
inline: $crate::private::ManuallyDrop::new(inline_fn),
}
} else {
let boxed_fn = BoxedFn {
zero: 0,
closure: $crate::private::Box::new(f),
};
TinyClosure {
boxed: $crate::private::ManuallyDrop::new(boxed_fn),
}
}
}
$crate::private_tiny_fn!(@call $fun ($($arg_name: $arg_type),*) $( -> $ret)?);
}
impl<'closure, $($($t,)+)? const INLINE_SIZE: usize> $crate::private::Closure for $name<'closure, $($($t,)+)? INLINE_SIZE> {
type Inner = TinyClosure<'closure, $($($t,)+)? INLINE_SIZE>;
}
};
#[repr(transparent)]
$(#[$meta])*
$vis struct $name<'closure, $($($t,)+)? const INLINE_SIZE: usize = { $crate::DEFAULT_INLINE_SIZE }> {
#[allow(dead_code)]
inner: < $name<'closure, $($($t,)+)? INLINE_SIZE> as $crate::private::Closure>::Inner,
}
impl<'closure, $($($t,)+)? const INLINE_SIZE: usize> $name<'closure, $($($t,)+)? INLINE_SIZE> {
#[inline]
pub fn new<F>(f: F) -> Self
where
F: $fun ($($arg_type),*) $( -> $ret)? + 'closure,
{
$name {
inner: << $name< $($($t,)+)? INLINE_SIZE> as $crate::private::Closure>::Inner>::new(f),
}
}
$crate::private_tiny_fn!(@call_outer $fun ($($arg_name: $arg_type),*) $( -> $ret)?);
}
)*
};
}
#[cfg(feature = "example")]
pub mod example {
//! This module contains a few example declarations with [`tiny_fn!`] macro.\
//! And their usage in the section below.
//!
//! # Usage
//!
//! ```
//! # extern crate alloc;
//! # use tiny_fn::example::*;
//! # use alloc::{borrow::ToOwned, format};
//! #
//! let binop: BinOp::<i32, 24> = BinOp::new(|a, b| a + b);
//! assert_eq!(3, binop.call(1, 2));
//!
//! let a = "Hello".to_owned();
//! let b = "world".to_owned();
//! let make_string = MakeString::<32>::new(move || format!("{a} {b}!"));
//!
//! assert_eq!(make_string.call(), "Hello world!");
//! ```
tiny_fn! {
/// Contains any binary operation for a specific type.
/// That takes two values of that type
/// and returns value of that type.
pub struct BinOp<T> = Fn(a: T, b: T) -> T;
pub struct MakeString = Fn() -> alloc::string::String;
}
}
#[cfg(test)]
mod tests {
#[test]
fn test_foo() {
tiny_fn! {
pub(crate) struct Foo<T> = FnMut(a: &T, b: T) -> T;
pub struct Bar = Fn(b: u8) -> alloc::string::String;
}
let mut x = 3;
let mut foo = Foo::<u8>::new(|a, b| {
x += a + b;
x
});
let bar: Bar<0> = Bar::new(|b| alloc::format!("{}", b));
assert_eq!(6, foo.call(&1, 2));
assert_eq!(13, foo.call(&3, 4));
assert_eq!("3", bar.call(3));
}
}