1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use crate::output::analysis::random::Rng;
use crate::output::wrap_yellow;
use std::time::Duration;
#[allow(unsafe_code)]
pub fn black_box<T>(dummy: T) -> T {
unsafe {
let ret = std::ptr::read_volatile(&dummy);
std::mem::forget(dummy);
ret
}
}
pub struct BenchmarkConfig {
pub measurement_time: Duration,
pub num_resamples: usize,
pub num_samples: usize,
pub warm_up_time: Duration,
pub dump_results_to_disk: bool,
}
impl Default for BenchmarkConfig {
fn default() -> Self {
BenchmarkConfig {
measurement_time: Duration::from_secs(5),
num_resamples: 100_000,
num_samples: 100,
warm_up_time: Duration::from_secs(3),
dump_results_to_disk: true,
}
}
}
pub(crate) fn calculate_iterations(
warmup_mean_execution_time: f64,
num_samples: u64,
target_time: Duration,
) -> Vec<u64> {
let met = warmup_mean_execution_time;
let m_ns = target_time.as_nanos();
let total_runs = num_samples * (num_samples + 1) / 2;
let d = ((m_ns as f64 / met / total_runs as f64).ceil() as u64).max(1);
let expected_nanoseconds = total_runs as f64 * d as f64 * met;
if d == 1 {
let actual_time = Duration::from_nanos(expected_nanoseconds as u64);
println!(
"{} You may wish to increase target time to {:.1?} or lower the requested number of samples",
wrap_yellow(&format!(
"Unable to complete {} samples in {:.1?}",
num_samples, target_time
)),
actual_time
);
}
(1..=num_samples).map(|a| a * d).collect()
}
pub(crate) fn calculate_t_value(sample_a: &[f64], sample_b: &[f64]) -> f64 {
let a_mean = calculate_mean(sample_a);
let b_mean = calculate_mean(sample_b);
let a_var = calculate_variance(sample_a, a_mean);
let b_var = calculate_variance(sample_b, b_mean);
let a_len = sample_a.len() as f64;
let b_len = sample_b.len() as f64;
let mean_diff = a_mean - b_mean;
let d = (a_var / a_len + b_var / b_len).sqrt();
mean_diff / d
}
pub(crate) fn calculate_mean(a: &[f64]) -> f64 {
a.iter().sum::<f64>() / a.len() as f64
}
pub(crate) fn calculate_variance(sample: &[f64], mean: f64) -> f64 {
let sum = sample
.iter()
.copied()
.map(|val| (val - mean).powi(2))
.sum::<f64>();
sum / (sample.len() as f64 - 1f64) }
pub(crate) fn resample(sample_a: &[f64], sample_b: &[f64], times: usize) -> Vec<f64> {
let a_len = sample_a.len();
let mut combined = Vec::with_capacity(a_len + sample_b.len());
combined.extend_from_slice(sample_a);
combined.extend_from_slice(sample_b);
let mut rng = Rng::new();
let combined_len = combined.len();
let mut distributions = Vec::new();
for _ in 0..times {
let mut sample = Vec::with_capacity(combined_len);
for _ in 0..combined_len {
let index = (rng.next() % combined.len() as u64) as usize;
sample.push(combined[index]);
}
let sample_a = Vec::from(&sample[..a_len]);
let sample_b = Vec::from(&sample[a_len..]);
let t = calculate_t_value(&sample_a, &sample_b);
distributions.push(t);
}
distributions
}
pub(crate) fn calculate_p_value(total_t: f64, distribution: &[f64]) -> f64 {
let hits = distribution.iter().filter(|x| x < &&total_t).count();
let tails = 2; let min = std::cmp::min(hits, distribution.len() - hits);
(min * tails) as f64 / distribution.len() as f64
}
#[inline]
pub(crate) fn calculate_median(sample: &mut Vec<f64>) -> f64 {
sample.sort_by(f64::total_cmp);
sample.get(sample.len() / 2).copied().unwrap_or_default()
}
pub(crate) struct SamplingDataSimpleAnalysis {
pub(crate) elapsed: u128,
pub(crate) min: f64,
pub(crate) max: f64,
pub(crate) average: f64,
pub(crate) median: f64,
pub(crate) variance: f64,
pub(crate) stddev: f64,
pub(crate) per_sample_average: Vec<f64>,
}
#[cfg(test)]
mod tests {
use crate::output::analysis::criterion::{
calculate_mean, calculate_t_value, calculate_variance,
};
#[test]
fn calculates_mean() {
let data = vec![46.0, 69.0, 32.0, 60.0, 52.0, 41.0];
assert!(calculate_mean(&data) - 50.0 < 0.0000_001);
}
#[test]
fn calculates_variance() {
let data = vec![46.0, 69.0, 32.0, 60.0, 52.0, 41.0];
assert!(calculate_variance(&data, 50.0) - 177.2 < 0.00001);
}
#[test]
fn calculate_t() {
let sample_a = vec![19.7, 20.4, 19.6, 17.8, 18.5, 18.9, 18.3, 18.9, 19.5, 21.95];
let sample_b = vec![
28.3, 26.7, 20.1, 23.3, 25.2, 22.1, 17.7, 27.6, 20.6, 13.7, 23.2, 17.5, 20.6, 18.0,
23.9, 21.6, 24.3, 20.4, 23.9, 13.3,
];
assert!(calculate_t_value(&sample_a, &sample_b).abs() - 2.24787 < 0.0001);
}
}