1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
/* ***********************************************************
 * This file was automatically generated on 2023-12-25.      *
 *                                                           *
 * Rust Bindings Version 2.0.20                              *
 *                                                           *
 * If you have a bugfix for this file and want to commit it, *
 * please fix the bug in the generator. You can find a link  *
 * to the generators git repository on tinkerforge.com       *
 *************************************************************/

//! Communicates with RS232 devices.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/RS232V2_Bricklet_Rust.html).
#[allow(unused_imports)]
use crate::{
    byte_converter::*, converting_high_level_callback_receiver::ConvertingHighLevelCallbackReceiver,
    converting_receiver::BrickletRecvTimeoutError, device::*, error::TinkerforgeError, ip_connection::async_io::AsyncIpConnection,
    low_level_traits::LowLevelRead,
};
#[allow(unused_imports)]
use futures_core::Stream;
#[allow(unused_imports)]
use tokio_stream::StreamExt;
pub enum Rs232V2BrickletFunction {
    WriteLowLevel,
    ReadLowLevel,
    EnableReadCallback,
    DisableReadCallback,
    IsReadCallbackEnabled,
    SetConfiguration,
    GetConfiguration,
    SetBufferConfig,
    GetBufferConfig,
    GetBufferStatus,
    GetErrorCount,
    SetFrameReadableCallbackConfiguration,
    GetFrameReadableCallbackConfiguration,
    GetSpitfpErrorCount,
    SetBootloaderMode,
    GetBootloaderMode,
    SetWriteFirmwarePointer,
    WriteFirmware,
    SetStatusLedConfig,
    GetStatusLedConfig,
    GetChipTemperature,
    Reset,
    WriteUid,
    ReadUid,
    GetIdentity,
    CallbackReadLowLevel,
    CallbackErrorCount,
    CallbackFrameReadable,
}
impl From<Rs232V2BrickletFunction> for u8 {
    fn from(fun: Rs232V2BrickletFunction) -> Self {
        match fun {
            Rs232V2BrickletFunction::WriteLowLevel => 1,
            Rs232V2BrickletFunction::ReadLowLevel => 2,
            Rs232V2BrickletFunction::EnableReadCallback => 3,
            Rs232V2BrickletFunction::DisableReadCallback => 4,
            Rs232V2BrickletFunction::IsReadCallbackEnabled => 5,
            Rs232V2BrickletFunction::SetConfiguration => 6,
            Rs232V2BrickletFunction::GetConfiguration => 7,
            Rs232V2BrickletFunction::SetBufferConfig => 8,
            Rs232V2BrickletFunction::GetBufferConfig => 9,
            Rs232V2BrickletFunction::GetBufferStatus => 10,
            Rs232V2BrickletFunction::GetErrorCount => 11,
            Rs232V2BrickletFunction::SetFrameReadableCallbackConfiguration => 14,
            Rs232V2BrickletFunction::GetFrameReadableCallbackConfiguration => 15,
            Rs232V2BrickletFunction::GetSpitfpErrorCount => 234,
            Rs232V2BrickletFunction::SetBootloaderMode => 235,
            Rs232V2BrickletFunction::GetBootloaderMode => 236,
            Rs232V2BrickletFunction::SetWriteFirmwarePointer => 237,
            Rs232V2BrickletFunction::WriteFirmware => 238,
            Rs232V2BrickletFunction::SetStatusLedConfig => 239,
            Rs232V2BrickletFunction::GetStatusLedConfig => 240,
            Rs232V2BrickletFunction::GetChipTemperature => 242,
            Rs232V2BrickletFunction::Reset => 243,
            Rs232V2BrickletFunction::WriteUid => 248,
            Rs232V2BrickletFunction::ReadUid => 249,
            Rs232V2BrickletFunction::GetIdentity => 255,
            Rs232V2BrickletFunction::CallbackReadLowLevel => 12,
            Rs232V2BrickletFunction::CallbackErrorCount => 13,
            Rs232V2BrickletFunction::CallbackFrameReadable => 16,
        }
    }
}
pub const RS232_V2_BRICKLET_PARITY_NONE: u8 = 0;
pub const RS232_V2_BRICKLET_PARITY_ODD: u8 = 1;
pub const RS232_V2_BRICKLET_PARITY_EVEN: u8 = 2;
pub const RS232_V2_BRICKLET_STOPBITS_1: u8 = 1;
pub const RS232_V2_BRICKLET_STOPBITS_2: u8 = 2;
pub const RS232_V2_BRICKLET_WORDLENGTH_5: u8 = 5;
pub const RS232_V2_BRICKLET_WORDLENGTH_6: u8 = 6;
pub const RS232_V2_BRICKLET_WORDLENGTH_7: u8 = 7;
pub const RS232_V2_BRICKLET_WORDLENGTH_8: u8 = 8;
pub const RS232_V2_BRICKLET_FLOWCONTROL_OFF: u8 = 0;
pub const RS232_V2_BRICKLET_FLOWCONTROL_SOFTWARE: u8 = 1;
pub const RS232_V2_BRICKLET_FLOWCONTROL_HARDWARE: u8 = 2;
pub const RS232_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER: u8 = 0;
pub const RS232_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE: u8 = 1;
pub const RS232_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT: u8 = 2;
pub const RS232_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT: u8 = 3;
pub const RS232_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT: u8 = 4;
pub const RS232_V2_BRICKLET_BOOTLOADER_STATUS_OK: u8 = 0;
pub const RS232_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE: u8 = 1;
pub const RS232_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE: u8 = 2;
pub const RS232_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT: u8 = 3;
pub const RS232_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT: u8 = 4;
pub const RS232_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH: u8 = 5;
pub const RS232_V2_BRICKLET_STATUS_LED_CONFIG_OFF: u8 = 0;
pub const RS232_V2_BRICKLET_STATUS_LED_CONFIG_ON: u8 = 1;
pub const RS232_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT: u8 = 2;
pub const RS232_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS: u8 = 3;

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct WriteLowLevel {
    pub message_chunk_written: u8,
}
impl FromByteSlice for WriteLowLevel {
    fn bytes_expected() -> usize {
        1
    }
    fn from_le_byte_slice(bytes: &[u8]) -> WriteLowLevel {
        WriteLowLevel { message_chunk_written: <u8>::from_le_byte_slice(&bytes[0..1]) }
    }
}

#[derive(Clone, Copy)]
pub struct ReadLowLevel {
    pub message_length: u16,
    pub message_chunk_offset: u16,
    pub message_chunk_data: [char; 60],
}
impl FromByteSlice for ReadLowLevel {
    fn bytes_expected() -> usize {
        64
    }
    fn from_le_byte_slice(bytes: &[u8]) -> ReadLowLevel {
        ReadLowLevel {
            message_length: <u16>::from_le_byte_slice(&bytes[0..2]),
            message_chunk_offset: <u16>::from_le_byte_slice(&bytes[2..4]),
            message_chunk_data: <[char; 60]>::from_le_byte_slice(&bytes[4..64]),
        }
    }
}
impl LowLevelRead<char, ReadResult> for ReadLowLevel {
    fn ll_message_length(&self) -> usize {
        self.message_length as usize
    }

    fn ll_message_chunk_offset(&self) -> usize {
        self.message_chunk_offset as usize
    }

    fn ll_message_chunk_data(&self) -> &[char] {
        &self.message_chunk_data
    }

    fn get_result(&self) -> ReadResult {
        ReadResult {}
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Configuration {
    pub baudrate: u32,
    pub parity: u8,
    pub stopbits: u8,
    pub wordlength: u8,
    pub flowcontrol: u8,
}
impl FromByteSlice for Configuration {
    fn bytes_expected() -> usize {
        8
    }
    fn from_le_byte_slice(bytes: &[u8]) -> Configuration {
        Configuration {
            baudrate: <u32>::from_le_byte_slice(&bytes[0..4]),
            parity: <u8>::from_le_byte_slice(&bytes[4..5]),
            stopbits: <u8>::from_le_byte_slice(&bytes[5..6]),
            wordlength: <u8>::from_le_byte_slice(&bytes[6..7]),
            flowcontrol: <u8>::from_le_byte_slice(&bytes[7..8]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct BufferConfig {
    pub send_buffer_size: u16,
    pub receive_buffer_size: u16,
}
impl FromByteSlice for BufferConfig {
    fn bytes_expected() -> usize {
        4
    }
    fn from_le_byte_slice(bytes: &[u8]) -> BufferConfig {
        BufferConfig {
            send_buffer_size: <u16>::from_le_byte_slice(&bytes[0..2]),
            receive_buffer_size: <u16>::from_le_byte_slice(&bytes[2..4]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct BufferStatus {
    pub send_buffer_used: u16,
    pub receive_buffer_used: u16,
}
impl FromByteSlice for BufferStatus {
    fn bytes_expected() -> usize {
        4
    }
    fn from_le_byte_slice(bytes: &[u8]) -> BufferStatus {
        BufferStatus {
            send_buffer_used: <u16>::from_le_byte_slice(&bytes[0..2]),
            receive_buffer_used: <u16>::from_le_byte_slice(&bytes[2..4]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct ErrorCount {
    pub error_count_overrun: u32,
    pub error_count_parity: u32,
}
impl FromByteSlice for ErrorCount {
    fn bytes_expected() -> usize {
        8
    }
    fn from_le_byte_slice(bytes: &[u8]) -> ErrorCount {
        ErrorCount {
            error_count_overrun: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_parity: <u32>::from_le_byte_slice(&bytes[4..8]),
        }
    }
}

#[derive(Clone, Copy)]
pub struct ReadLowLevelEvent {
    pub message_length: u16,
    pub message_chunk_offset: u16,
    pub message_chunk_data: [char; 60],
}
impl FromByteSlice for ReadLowLevelEvent {
    fn bytes_expected() -> usize {
        64
    }
    fn from_le_byte_slice(bytes: &[u8]) -> ReadLowLevelEvent {
        ReadLowLevelEvent {
            message_length: <u16>::from_le_byte_slice(&bytes[0..2]),
            message_chunk_offset: <u16>::from_le_byte_slice(&bytes[2..4]),
            message_chunk_data: <[char; 60]>::from_le_byte_slice(&bytes[4..64]),
        }
    }
}
impl LowLevelRead<char, ReadResult> for ReadLowLevelEvent {
    fn ll_message_length(&self) -> usize {
        self.message_length as usize
    }

    fn ll_message_chunk_offset(&self) -> usize {
        self.message_chunk_offset as usize
    }

    fn ll_message_chunk_data(&self) -> &[char] {
        &self.message_chunk_data
    }

    fn get_result(&self) -> ReadResult {
        ReadResult {}
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct ErrorCountEvent {
    pub error_count_overrun: u32,
    pub error_count_parity: u32,
}
impl FromByteSlice for ErrorCountEvent {
    fn bytes_expected() -> usize {
        8
    }
    fn from_le_byte_slice(bytes: &[u8]) -> ErrorCountEvent {
        ErrorCountEvent {
            error_count_overrun: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_parity: <u32>::from_le_byte_slice(&bytes[4..8]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct SpitfpErrorCount {
    pub error_count_ack_checksum: u32,
    pub error_count_message_checksum: u32,
    pub error_count_frame: u32,
    pub error_count_overflow: u32,
}
impl FromByteSlice for SpitfpErrorCount {
    fn bytes_expected() -> usize {
        16
    }
    fn from_le_byte_slice(bytes: &[u8]) -> SpitfpErrorCount {
        SpitfpErrorCount {
            error_count_ack_checksum: <u32>::from_le_byte_slice(&bytes[0..4]),
            error_count_message_checksum: <u32>::from_le_byte_slice(&bytes[4..8]),
            error_count_frame: <u32>::from_le_byte_slice(&bytes[8..12]),
            error_count_overflow: <u32>::from_le_byte_slice(&bytes[12..16]),
        }
    }
}

#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
    pub uid: String,
    pub connected_uid: String,
    pub position: char,
    pub hardware_version: [u8; 3],
    pub firmware_version: [u8; 3],
    pub device_identifier: u16,
}
impl FromByteSlice for Identity {
    fn bytes_expected() -> usize {
        25
    }
    fn from_le_byte_slice(bytes: &[u8]) -> Identity {
        Identity {
            uid: <String>::from_le_byte_slice(&bytes[0..8]),
            connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
            position: <char>::from_le_byte_slice(&bytes[16..17]),
            hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
            firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
            device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
        }
    }
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct WriteResult {}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct ReadResult {}

/// Communicates with RS232 devices
#[derive(Clone)]
pub struct Rs232V2Bricklet {
    device: Device,
}
impl Rs232V2Bricklet {
    pub const DEVICE_IDENTIFIER: u16 = 2108;
    pub const DEVICE_DISPLAY_NAME: &'static str = "RS232 Bricklet 2.0";
    /// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
    pub fn new(uid: &str, connection: AsyncIpConnection) -> Rs232V2Bricklet {
        let mut result = Rs232V2Bricklet { device: Device::new([2, 0, 10], uid, connection, Self::DEVICE_DISPLAY_NAME) };
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::WriteLowLevel) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::ReadLowLevel) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::EnableReadCallback) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::DisableReadCallback) as usize] = ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::IsReadCallbackEnabled) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::SetConfiguration) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetConfiguration) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::SetBufferConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetBufferConfig) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetBufferStatus) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetErrorCount) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::SetFrameReadableCallbackConfiguration) as usize] =
            ResponseExpectedFlag::True;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetFrameReadableCallbackConfiguration) as usize] =
            ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetSpitfpErrorCount) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::SetBootloaderMode) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetBootloaderMode) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::SetWriteFirmwarePointer) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::WriteFirmware) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::SetStatusLedConfig) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetStatusLedConfig) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetChipTemperature) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::Reset) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::WriteUid) as usize] = ResponseExpectedFlag::False;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::ReadUid) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result.device.response_expected[u8::from(Rs232V2BrickletFunction::GetIdentity) as usize] = ResponseExpectedFlag::AlwaysTrue;
        result
    }

    /// Returns the response expected flag for the function specified by the function ID parameter.
    /// It is true if the function is expected to send a response, false otherwise.
    ///
    /// For getter functions this is enabled by default and cannot be disabled, because those
    /// functions will always send a response. For callback configuration functions it is enabled
    /// by default too, but can be disabled by [`set_response_expected`](crate::rs232_v2_bricklet::Rs232V2Bricklet::set_response_expected).
    /// For setter functions it is disabled by default and can be enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts
    /// and other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    ///
    /// See [`set_response_expected`](crate::rs232_v2_bricklet::Rs232V2Bricklet::set_response_expected) for the list of function ID constants available for this function.
    pub fn get_response_expected(&mut self, fun: Rs232V2BrickletFunction) -> Result<bool, GetResponseExpectedError> {
        self.device.get_response_expected(u8::from(fun))
    }

    /// Changes the response expected flag of the function specified by the function ID parameter.
    /// This flag can only be changed for setter (default value: false) and callback configuration
    /// functions (default value: true). For getter functions it is always enabled.
    ///
    /// Enabling the response expected flag for a setter function allows to detect timeouts and
    /// other error conditions calls of this setter as well. The device will then send a response
    /// for this purpose. If this flag is disabled for a setter function then no response is sent
    /// and errors are silently ignored, because they cannot be detected.
    pub fn set_response_expected(&mut self, fun: Rs232V2BrickletFunction, response_expected: bool) -> Result<(), SetResponseExpectedError> {
        self.device.set_response_expected(u8::from(fun), response_expected)
    }

    /// Changes the response expected flag for all setter and callback configuration functions of this device at once.
    pub fn set_response_expected_all(&mut self, response_expected: bool) {
        self.device.set_response_expected_all(response_expected)
    }

    /// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
    /// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
    pub fn get_api_version(&self) -> [u8; 3] {
        self.device.api_version
    }

    /// See [`get_read_callback_receiver`](crate::rs232_v2::RS232V2::get_read_callback_receiver)
    pub async fn get_read_low_level_callback_receiver(&mut self) -> impl Stream<Item = ReadLowLevelEvent> {
        self.device
            .get_callback_receiver(u8::from(Rs232V2BrickletFunction::CallbackReadLowLevel))
            .await
            .map(|p| ReadLowLevelEvent::from_le_byte_slice(p.body()))
    }

    /// This receiver is called if a new error occurs. It returns
    /// the current overrun and parity error count.
    pub async fn get_error_count_callback_receiver(&mut self) -> impl Stream<Item = ErrorCountEvent> {
        self.device
            .get_callback_receiver(u8::from(Rs232V2BrickletFunction::CallbackErrorCount))
            .await
            .map(|p| ErrorCountEvent::from_le_byte_slice(p.body()))
    }

    /// This receiver is called if at least one frame of data is readable. The frame size is configured with [`set_frame_readable_callback_configuration`].
    /// The frame count parameter is the number of frames that can be read.
    /// This receiver is triggered only once until [`read`] is called. This means, that if you have configured a frame size of X bytes,
    /// you can read exactly X bytes using the [`read`] function, every time the receiver triggers without checking the frame count parameter.
    ///
    ///
    /// .. versionadded:: 2.0.3$nbsp;(Plugin)
    pub async fn get_frame_readable_callback_receiver(&mut self) -> impl Stream<Item = u16> {
        self.device
            .get_callback_receiver(u8::from(Rs232V2BrickletFunction::CallbackFrameReadable))
            .await
            .map(|p| u16::from_le_byte_slice(p.body()))
    }

    /// Writes characters to the RS232 interface. The characters can be binary data,
    /// ASCII or similar is not necessary.
    ///
    /// The return value is the number of characters that were written.
    ///
    /// See [`set_configuration`] for configuration possibilities
    /// regarding baud rate, parity and so on.
    pub async fn write_low_level(
        &mut self,
        message_length: u16,
        message_chunk_offset: u16,
        message_chunk_data: &[char; 60],
    ) -> Result<WriteLowLevel, TinkerforgeError> {
        let mut payload = [0; 64];
        message_length.write_to_slice(&mut payload[0..2]);
        message_chunk_offset.write_to_slice(&mut payload[2..4]);
        message_chunk_data.write_to_slice(&mut payload[4..64]);

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::WriteLowLevel), &payload).await?;
        Ok(WriteLowLevel::from_le_byte_slice(result.body()))
    }

    /// Returns up to *length* characters from receive buffer.
    ///
    /// Instead of polling with this function, you can also use
    /// callbacks. But note that this function will return available
    /// data only when the read receiver is disabled.
    /// See [`enable_read_callback`] and [`get_read_callback_receiver`] receiver.
    pub async fn read_low_level(&mut self, length: u16) -> Result<ReadLowLevel, TinkerforgeError> {
        let mut payload = [0; 2];
        length.write_to_slice(&mut payload[0..2]);

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::ReadLowLevel), &payload).await?;
        Ok(ReadLowLevel::from_le_byte_slice(result.body()))
    }

    /// Enables the [`get_read_callback_receiver`] receiver. This will disable the [`get_frame_readable_callback_receiver`] receiver.
    ///
    /// By default the receiver is disabled.
    pub async fn enable_read_callback(&mut self) -> Result<(), TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.set(u8::from(Rs232V2BrickletFunction::EnableReadCallback), &payload).await?;
        Ok(())
    }

    /// Disables the [`get_read_callback_receiver`] receiver.
    ///
    /// By default the receiver is disabled.
    pub async fn disable_read_callback(&mut self) -> Result<(), TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.set(u8::from(Rs232V2BrickletFunction::DisableReadCallback), &payload).await?;
        Ok(())
    }

    /// Returns *true* if the [`get_read_callback_receiver`] receiver is enabled,
    /// *false* otherwise.
    pub async fn is_read_callback_enabled(&mut self) -> Result<bool, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::IsReadCallbackEnabled), &payload).await?;
        Ok(bool::from_le_byte_slice(result.body()))
    }

    /// Sets the configuration for the RS232 communication.
    ///
    /// Associated constants:
    /// * RS232_V2_BRICKLET_PARITY_NONE
    ///	* RS232_V2_BRICKLET_PARITY_ODD
    ///	* RS232_V2_BRICKLET_PARITY_EVEN
    ///	* RS232_V2_BRICKLET_STOPBITS_1
    ///	* RS232_V2_BRICKLET_STOPBITS_2
    ///	* RS232_V2_BRICKLET_WORDLENGTH_5
    ///	* RS232_V2_BRICKLET_WORDLENGTH_6
    ///	* RS232_V2_BRICKLET_WORDLENGTH_7
    ///	* RS232_V2_BRICKLET_WORDLENGTH_8
    ///	* RS232_V2_BRICKLET_FLOWCONTROL_OFF
    ///	* RS232_V2_BRICKLET_FLOWCONTROL_SOFTWARE
    ///	* RS232_V2_BRICKLET_FLOWCONTROL_HARDWARE
    pub async fn set_configuration(
        &mut self,
        baudrate: u32,
        parity: u8,
        stopbits: u8,
        wordlength: u8,
        flowcontrol: u8,
    ) -> Result<(), TinkerforgeError> {
        let mut payload = [0; 8];
        baudrate.write_to_slice(&mut payload[0..4]);
        parity.write_to_slice(&mut payload[4..5]);
        stopbits.write_to_slice(&mut payload[5..6]);
        wordlength.write_to_slice(&mut payload[6..7]);
        flowcontrol.write_to_slice(&mut payload[7..8]);

        #[allow(unused_variables)]
        let result = self.device.set(u8::from(Rs232V2BrickletFunction::SetConfiguration), &payload).await?;
        Ok(())
    }

    /// Returns the configuration as set by [`set_configuration`].
    ///
    /// Associated constants:
    /// * RS232_V2_BRICKLET_PARITY_NONE
    ///	* RS232_V2_BRICKLET_PARITY_ODD
    ///	* RS232_V2_BRICKLET_PARITY_EVEN
    ///	* RS232_V2_BRICKLET_STOPBITS_1
    ///	* RS232_V2_BRICKLET_STOPBITS_2
    ///	* RS232_V2_BRICKLET_WORDLENGTH_5
    ///	* RS232_V2_BRICKLET_WORDLENGTH_6
    ///	* RS232_V2_BRICKLET_WORDLENGTH_7
    ///	* RS232_V2_BRICKLET_WORDLENGTH_8
    ///	* RS232_V2_BRICKLET_FLOWCONTROL_OFF
    ///	* RS232_V2_BRICKLET_FLOWCONTROL_SOFTWARE
    ///	* RS232_V2_BRICKLET_FLOWCONTROL_HARDWARE
    pub async fn get_configuration(&mut self) -> Result<Configuration, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetConfiguration), &payload).await?;
        Ok(Configuration::from_le_byte_slice(result.body()))
    }

    /// Sets the send and receive buffer size in byte. In total the buffers have to be
    /// 10240 byte (10KiB) in size, the minimum buffer size is 1024 byte (1KiB) for each.
    ///
    /// The current buffer content is lost if this function is called.
    ///
    /// The send buffer holds data that is given by [`write`] and
    /// can not be written yet. The receive buffer holds data that is
    /// received through RS232 but could not yet be send to the
    /// user, either by [`read`] or through [`get_read_callback_receiver`] receiver.
    pub async fn set_buffer_config(&mut self, send_buffer_size: u16, receive_buffer_size: u16) -> Result<(), TinkerforgeError> {
        let mut payload = [0; 4];
        send_buffer_size.write_to_slice(&mut payload[0..2]);
        receive_buffer_size.write_to_slice(&mut payload[2..4]);

        #[allow(unused_variables)]
        let result = self.device.set(u8::from(Rs232V2BrickletFunction::SetBufferConfig), &payload).await?;
        Ok(())
    }

    /// Returns the buffer configuration as set by [`set_buffer_config`].
    pub async fn get_buffer_config(&mut self) -> Result<BufferConfig, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetBufferConfig), &payload).await?;
        Ok(BufferConfig::from_le_byte_slice(result.body()))
    }

    /// Returns the currently used bytes for the send and received buffer.
    ///
    /// See [`set_buffer_config`] for buffer size configuration.
    pub async fn get_buffer_status(&mut self) -> Result<BufferStatus, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetBufferStatus), &payload).await?;
        Ok(BufferStatus::from_le_byte_slice(result.body()))
    }

    /// Returns the current number of overrun and parity errors.
    pub async fn get_error_count(&mut self) -> Result<ErrorCount, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetErrorCount), &payload).await?;
        Ok(ErrorCount::from_le_byte_slice(result.body()))
    }

    /// Configures the [`get_frame_readable_callback_receiver`] receiver. The frame size is the number of bytes, that have to be readable to trigger the receiver.
    /// A frame size of 0 disables the receiver. A frame size greater than 0 enables the receiver and disables the [`get_read_callback_receiver`] receiver.
    ///
    /// By default the receiver is disabled.
    ///
    ///
    /// .. versionadded:: 2.0.3$nbsp;(Plugin)
    pub async fn set_frame_readable_callback_configuration(&mut self, frame_size: u16) -> Result<(), TinkerforgeError> {
        let mut payload = [0; 2];
        frame_size.write_to_slice(&mut payload[0..2]);

        #[allow(unused_variables)]
        let result = self.device.set(u8::from(Rs232V2BrickletFunction::SetFrameReadableCallbackConfiguration), &payload).await?;
        Ok(())
    }

    /// Returns the receiver configuration as set by [`set_frame_readable_callback_configuration`].
    ///
    ///
    /// .. versionadded:: 2.0.3$nbsp;(Plugin)
    pub async fn get_frame_readable_callback_configuration(&mut self) -> Result<u16, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetFrameReadableCallbackConfiguration), &payload).await?;
        Ok(u16::from_le_byte_slice(result.body()))
    }

    /// Returns the error count for the communication between Brick and Bricklet.
    ///
    /// The errors are divided into
    ///
    /// * ACK checksum errors,
    /// * message checksum errors,
    /// * framing errors and
    /// * overflow errors.
    ///
    /// The errors counts are for errors that occur on the Bricklet side. All
    /// Bricks have a similar function that returns the errors on the Brick side.
    pub async fn get_spitfp_error_count(&mut self) -> Result<SpitfpErrorCount, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetSpitfpErrorCount), &payload).await?;
        Ok(SpitfpErrorCount::from_le_byte_slice(result.body()))
    }

    /// Sets the bootloader mode and returns the status after the requested
    /// mode change was instigated.
    ///
    /// You can change from bootloader mode to firmware mode and vice versa. A change
    /// from bootloader mode to firmware mode will only take place if the entry function,
    /// device identifier and CRC are present and correct.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    ///
    /// Associated constants:
    /// * RS232_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* RS232_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* RS232_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* RS232_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* RS232_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    ///	* RS232_V2_BRICKLET_BOOTLOADER_STATUS_OK
    ///	* RS232_V2_BRICKLET_BOOTLOADER_STATUS_INVALID_MODE
    ///	* RS232_V2_BRICKLET_BOOTLOADER_STATUS_NO_CHANGE
    ///	* RS232_V2_BRICKLET_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT
    ///	* RS232_V2_BRICKLET_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT
    ///	* RS232_V2_BRICKLET_BOOTLOADER_STATUS_CRC_MISMATCH
    pub async fn set_bootloader_mode(&mut self, mode: u8) -> Result<u8, TinkerforgeError> {
        let mut payload = [0; 1];
        mode.write_to_slice(&mut payload[0..1]);

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::SetBootloaderMode), &payload).await?;
        Ok(u8::from_le_byte_slice(result.body()))
    }

    /// Returns the current bootloader mode, see [`set_bootloader_mode`].
    ///
    /// Associated constants:
    /// * RS232_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER
    ///	* RS232_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE
    ///	* RS232_V2_BRICKLET_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT
    ///	* RS232_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT
    ///	* RS232_V2_BRICKLET_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT
    pub async fn get_bootloader_mode(&mut self) -> Result<u8, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetBootloaderMode), &payload).await?;
        Ok(u8::from_le_byte_slice(result.body()))
    }

    /// Sets the firmware pointer for [`write_firmware`]. The pointer has
    /// to be increased by chunks of size 64. The data is written to flash
    /// every 4 chunks (which equals to one page of size 256).
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub async fn set_write_firmware_pointer(&mut self, pointer: u32) -> Result<(), TinkerforgeError> {
        let mut payload = [0; 4];
        pointer.write_to_slice(&mut payload[0..4]);

        #[allow(unused_variables)]
        let result = self.device.set(u8::from(Rs232V2BrickletFunction::SetWriteFirmwarePointer), &payload).await?;
        Ok(())
    }

    /// Writes 64 Bytes of firmware at the position as written by
    /// [`set_write_firmware_pointer`] before. The firmware is written
    /// to flash every 4 chunks.
    ///
    /// You can only write firmware in bootloader mode.
    ///
    /// This function is used by Brick Viewer during flashing. It should not be
    /// necessary to call it in a normal user program.
    pub async fn write_firmware(&mut self, data: &[u8; 64]) -> Result<u8, TinkerforgeError> {
        let mut payload = [0; 64];
        data.write_to_slice(&mut payload[0..64]);

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::WriteFirmware), &payload).await?;
        Ok(u8::from_le_byte_slice(result.body()))
    }

    /// Sets the status LED configuration. By default the LED shows
    /// communication traffic between Brick and Bricklet, it flickers once
    /// for every 10 received data packets.
    ///
    /// You can also turn the LED permanently on/off or show a heartbeat.
    ///
    /// If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
    ///
    /// Associated constants:
    /// * RS232_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* RS232_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* RS232_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* RS232_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub async fn set_status_led_config(&mut self, config: u8) -> Result<(), TinkerforgeError> {
        let mut payload = [0; 1];
        config.write_to_slice(&mut payload[0..1]);

        #[allow(unused_variables)]
        let result = self.device.set(u8::from(Rs232V2BrickletFunction::SetStatusLedConfig), &payload).await?;
        Ok(())
    }

    /// Returns the configuration as set by [`set_status_led_config`]
    ///
    /// Associated constants:
    /// * RS232_V2_BRICKLET_STATUS_LED_CONFIG_OFF
    ///	* RS232_V2_BRICKLET_STATUS_LED_CONFIG_ON
    ///	* RS232_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_HEARTBEAT
    ///	* RS232_V2_BRICKLET_STATUS_LED_CONFIG_SHOW_STATUS
    pub async fn get_status_led_config(&mut self) -> Result<u8, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetStatusLedConfig), &payload).await?;
        Ok(u8::from_le_byte_slice(result.body()))
    }

    /// Returns the temperature as measured inside the microcontroller. The
    /// value returned is not the ambient temperature!
    ///
    /// The temperature is only proportional to the real temperature and it has bad
    /// accuracy. Practically it is only useful as an indicator for
    /// temperature changes.
    pub async fn get_chip_temperature(&mut self) -> Result<i16, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetChipTemperature), &payload).await?;
        Ok(i16::from_le_byte_slice(result.body()))
    }

    /// Calling this function will reset the Bricklet. All configurations
    /// will be lost.
    ///
    /// After a reset you have to create new device objects,
    /// calling functions on the existing ones will result in
    /// undefined behavior!
    pub async fn reset(&mut self) -> Result<(), TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.set(u8::from(Rs232V2BrickletFunction::Reset), &payload).await?;
        Ok(())
    }

    /// Writes a new UID into flash. If you want to set a new UID
    /// you have to decode the Base58 encoded UID string into an
    /// integer first.
    ///
    /// We recommend that you use Brick Viewer to change the UID.
    pub async fn write_uid(&mut self, uid: u32) -> Result<(), TinkerforgeError> {
        let mut payload = [0; 4];
        uid.write_to_slice(&mut payload[0..4]);

        #[allow(unused_variables)]
        let result = self.device.set(u8::from(Rs232V2BrickletFunction::WriteUid), &payload).await?;
        Ok(())
    }

    /// Returns the current UID as an integer. Encode as
    /// Base58 to get the usual string version.
    pub async fn read_uid(&mut self) -> Result<u32, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::ReadUid), &payload).await?;
        Ok(u32::from_le_byte_slice(result.body()))
    }

    /// Returns the UID, the UID where the Bricklet is connected to,
    /// the position, the hardware and firmware version as well as the
    /// device identifier.
    ///
    /// The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port).
    /// A Bricklet connected to an [Isolator Bricklet](isolator_bricklet) is always at
    /// position 'z'.
    ///
    /// The device identifier numbers can be found [here](device_identifier).
    /// |device_identifier_constant|
    pub async fn get_identity(&mut self) -> Result<Identity, TinkerforgeError> {
        let payload = [0; 0];

        #[allow(unused_variables)]
        let result = self.device.get(u8::from(Rs232V2BrickletFunction::GetIdentity), &payload).await?;
        Ok(Identity::from_le_byte_slice(result.body()))
    }
}