1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/* ***********************************************************
* This file was automatically generated on 2023-12-25. *
* *
* Rust Bindings Version 2.0.20 *
* *
* If you have a bugfix for this file and want to commit it, *
* please fix the bug in the generator. You can find a link *
* to the generators git repository on tinkerforge.com *
*************************************************************/
//! 4 galvanically isolated solid state relays.
//!
//! See also the documentation [here](https://www.tinkerforge.com/en/doc/Software/Bricklets/IndustrialQuadRelay_Bricklet_Rust.html).
#[allow(unused_imports)]
use crate::{
byte_converter::*, device::*, error::TinkerforgeError, ip_connection::async_io::AsyncIpConnection, low_level_traits::LowLevelRead,
};
#[allow(unused_imports)]
use futures_core::Stream;
#[allow(unused_imports)]
use tokio_stream::StreamExt;
pub enum IndustrialQuadRelayBrickletFunction {
SetValue,
GetValue,
SetMonoflop,
GetMonoflop,
SetGroup,
GetGroup,
GetAvailableForGroup,
SetSelectedValues,
GetIdentity,
CallbackMonoflopDone,
}
impl From<IndustrialQuadRelayBrickletFunction> for u8 {
fn from(fun: IndustrialQuadRelayBrickletFunction) -> Self {
match fun {
IndustrialQuadRelayBrickletFunction::SetValue => 1,
IndustrialQuadRelayBrickletFunction::GetValue => 2,
IndustrialQuadRelayBrickletFunction::SetMonoflop => 3,
IndustrialQuadRelayBrickletFunction::GetMonoflop => 4,
IndustrialQuadRelayBrickletFunction::SetGroup => 5,
IndustrialQuadRelayBrickletFunction::GetGroup => 6,
IndustrialQuadRelayBrickletFunction::GetAvailableForGroup => 7,
IndustrialQuadRelayBrickletFunction::SetSelectedValues => 9,
IndustrialQuadRelayBrickletFunction::GetIdentity => 255,
IndustrialQuadRelayBrickletFunction::CallbackMonoflopDone => 8,
}
}
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct Monoflop {
pub value: u16,
pub time: u32,
pub time_remaining: u32,
}
impl FromByteSlice for Monoflop {
fn bytes_expected() -> usize {
10
}
fn from_le_byte_slice(bytes: &[u8]) -> Monoflop {
Monoflop {
value: <u16>::from_le_byte_slice(&bytes[0..2]),
time: <u32>::from_le_byte_slice(&bytes[2..6]),
time_remaining: <u32>::from_le_byte_slice(&bytes[6..10]),
}
}
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
pub struct MonoflopDoneEvent {
pub selection_mask: u16,
pub value_mask: u16,
}
impl FromByteSlice for MonoflopDoneEvent {
fn bytes_expected() -> usize {
4
}
fn from_le_byte_slice(bytes: &[u8]) -> MonoflopDoneEvent {
MonoflopDoneEvent { selection_mask: <u16>::from_le_byte_slice(&bytes[0..2]), value_mask: <u16>::from_le_byte_slice(&bytes[2..4]) }
}
}
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Identity {
pub uid: String,
pub connected_uid: String,
pub position: char,
pub hardware_version: [u8; 3],
pub firmware_version: [u8; 3],
pub device_identifier: u16,
}
impl FromByteSlice for Identity {
fn bytes_expected() -> usize {
25
}
fn from_le_byte_slice(bytes: &[u8]) -> Identity {
Identity {
uid: <String>::from_le_byte_slice(&bytes[0..8]),
connected_uid: <String>::from_le_byte_slice(&bytes[8..16]),
position: <char>::from_le_byte_slice(&bytes[16..17]),
hardware_version: <[u8; 3]>::from_le_byte_slice(&bytes[17..20]),
firmware_version: <[u8; 3]>::from_le_byte_slice(&bytes[20..23]),
device_identifier: <u16>::from_le_byte_slice(&bytes[23..25]),
}
}
}
/// 4 galvanically isolated solid state relays
#[derive(Clone)]
pub struct IndustrialQuadRelayBricklet {
device: Device,
}
impl IndustrialQuadRelayBricklet {
pub const DEVICE_IDENTIFIER: u16 = 225;
pub const DEVICE_DISPLAY_NAME: &'static str = "Industrial Quad Relay Bricklet";
/// Creates an object with the unique device ID `uid`. This object can then be used after the IP Connection `ip_connection` is connected.
pub fn new(uid: &str, connection: AsyncIpConnection) -> IndustrialQuadRelayBricklet {
let mut result = IndustrialQuadRelayBricklet { device: Device::new([2, 0, 10], uid, connection, Self::DEVICE_DISPLAY_NAME) };
result.device.response_expected[u8::from(IndustrialQuadRelayBrickletFunction::SetValue) as usize] = ResponseExpectedFlag::False;
result.device.response_expected[u8::from(IndustrialQuadRelayBrickletFunction::GetValue) as usize] =
ResponseExpectedFlag::AlwaysTrue;
result.device.response_expected[u8::from(IndustrialQuadRelayBrickletFunction::SetMonoflop) as usize] = ResponseExpectedFlag::False;
result.device.response_expected[u8::from(IndustrialQuadRelayBrickletFunction::GetMonoflop) as usize] =
ResponseExpectedFlag::AlwaysTrue;
result.device.response_expected[u8::from(IndustrialQuadRelayBrickletFunction::SetGroup) as usize] = ResponseExpectedFlag::False;
result.device.response_expected[u8::from(IndustrialQuadRelayBrickletFunction::GetGroup) as usize] =
ResponseExpectedFlag::AlwaysTrue;
result.device.response_expected[u8::from(IndustrialQuadRelayBrickletFunction::GetAvailableForGroup) as usize] =
ResponseExpectedFlag::AlwaysTrue;
result.device.response_expected[u8::from(IndustrialQuadRelayBrickletFunction::SetSelectedValues) as usize] =
ResponseExpectedFlag::False;
result.device.response_expected[u8::from(IndustrialQuadRelayBrickletFunction::GetIdentity) as usize] =
ResponseExpectedFlag::AlwaysTrue;
result
}
/// Returns the response expected flag for the function specified by the function ID parameter.
/// It is true if the function is expected to send a response, false otherwise.
///
/// For getter functions this is enabled by default and cannot be disabled, because those
/// functions will always send a response. For callback configuration functions it is enabled
/// by default too, but can be disabled by [`set_response_expected`](crate::industrial_quad_relay_bricklet::IndustrialQuadRelayBricklet::set_response_expected).
/// For setter functions it is disabled by default and can be enabled.
///
/// Enabling the response expected flag for a setter function allows to detect timeouts
/// and other error conditions calls of this setter as well. The device will then send a response
/// for this purpose. If this flag is disabled for a setter function then no response is sent
/// and errors are silently ignored, because they cannot be detected.
///
/// See [`set_response_expected`](crate::industrial_quad_relay_bricklet::IndustrialQuadRelayBricklet::set_response_expected) for the list of function ID constants available for this function.
pub fn get_response_expected(&mut self, fun: IndustrialQuadRelayBrickletFunction) -> Result<bool, GetResponseExpectedError> {
self.device.get_response_expected(u8::from(fun))
}
/// Changes the response expected flag of the function specified by the function ID parameter.
/// This flag can only be changed for setter (default value: false) and callback configuration
/// functions (default value: true). For getter functions it is always enabled.
///
/// Enabling the response expected flag for a setter function allows to detect timeouts and
/// other error conditions calls of this setter as well. The device will then send a response
/// for this purpose. If this flag is disabled for a setter function then no response is sent
/// and errors are silently ignored, because they cannot be detected.
pub fn set_response_expected(
&mut self,
fun: IndustrialQuadRelayBrickletFunction,
response_expected: bool,
) -> Result<(), SetResponseExpectedError> {
self.device.set_response_expected(u8::from(fun), response_expected)
}
/// Changes the response expected flag for all setter and callback configuration functions of this device at once.
pub fn set_response_expected_all(&mut self, response_expected: bool) {
self.device.set_response_expected_all(response_expected)
}
/// Returns the version of the API definition (major, minor, revision) implemented by this API bindings.
/// This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
pub fn get_api_version(&self) -> [u8; 3] {
self.device.api_version
}
/// This receiver is triggered whenever a monoflop timer reaches 0. The
/// parameters contain the involved pins and the current value of the pins
/// (the value after the monoflop).
pub async fn get_monoflop_done_callback_receiver(&mut self) -> impl Stream<Item = MonoflopDoneEvent> {
self.device
.get_callback_receiver(u8::from(IndustrialQuadRelayBrickletFunction::CallbackMonoflopDone))
.await
.map(|p| MonoflopDoneEvent::from_le_byte_slice(p.body()))
}
/// Sets the output value with a bitmask (16bit). A 1 in the bitmask means relay
/// closed and a 0 means relay open.
///
/// For example: The value 3 or 0b0011 will close the relay of pins 0-1 and open
/// the other pins.
///
/// If no groups are used (see [`set_group`]), the pins correspond to the
/// markings on the Industrial Quad Relay Bricklet.
///
/// If groups are used, the pins correspond to the element in the group.
/// Element 1 in the group will get pins 0-3, element 2 pins 4-7, element 3
/// pins 8-11 and element 4 pins 12-15.
///
/// All running monoflop timers will be aborted if this function is called.
pub async fn set_value(&mut self, value_mask: u16) -> Result<(), TinkerforgeError> {
let mut payload = [0; 2];
value_mask.write_to_slice(&mut payload[0..2]);
#[allow(unused_variables)]
let result = self.device.set(u8::from(IndustrialQuadRelayBrickletFunction::SetValue), &payload).await?;
Ok(())
}
/// Returns the bitmask as set by [`set_value`].
pub async fn get_value(&mut self) -> Result<u16, TinkerforgeError> {
let payload = [0; 0];
#[allow(unused_variables)]
let result = self.device.get(u8::from(IndustrialQuadRelayBrickletFunction::GetValue), &payload).await?;
Ok(u16::from_le_byte_slice(result.body()))
}
/// Configures a monoflop of the pins specified by the first parameter
/// bitmask.
///
/// The second parameter is a bitmask with the desired value of the specified
/// pins. A 1 in the bitmask means relay closed and a 0 means relay open.
///
/// The third parameter indicates the time that the pins should hold
/// the value.
///
/// If this function is called with the parameters (9, 1, 1500) or
/// (0b1001, 0b0001, 1500): Pin 0 will close and pin 3 will open. In 1.5s pin 0
/// will open and pin 3 will close again.
///
/// A monoflop can be used as a fail-safe mechanism. For example: Lets assume you
/// have a RS485 bus and a Quad Relay Bricklet connected to one of the slave
/// stacks. You can now call this function every second, with a time parameter
/// of two seconds and pin 0 closed. Pin 0 will be closed all the time. If now
/// the RS485 connection is lost, then pin 0 will be opened in at most two seconds.
pub async fn set_monoflop(&mut self, selection_mask: u16, value_mask: u16, time: u32) -> Result<(), TinkerforgeError> {
let mut payload = [0; 8];
selection_mask.write_to_slice(&mut payload[0..2]);
value_mask.write_to_slice(&mut payload[2..4]);
time.write_to_slice(&mut payload[4..8]);
#[allow(unused_variables)]
let result = self.device.set(u8::from(IndustrialQuadRelayBrickletFunction::SetMonoflop), &payload).await?;
Ok(())
}
/// Returns (for the given pin) the current value and the time as set by
/// [`set_monoflop`] as well as the remaining time until the value flips.
///
/// If the timer is not running currently, the remaining time will be returned
/// as 0.
pub async fn get_monoflop(&mut self, pin: u8) -> Result<Monoflop, TinkerforgeError> {
let mut payload = [0; 1];
pin.write_to_slice(&mut payload[0..1]);
#[allow(unused_variables)]
let result = self.device.get(u8::from(IndustrialQuadRelayBrickletFunction::GetMonoflop), &payload).await?;
Ok(Monoflop::from_le_byte_slice(result.body()))
}
/// Sets a group of Quad Relay Bricklets that should work together. You can
/// find Bricklets that can be grouped together with [`get_available_for_group`].
///
/// The group consists of 4 elements. Element 1 in the group will get pins 0-3,
/// element 2 pins 4-7, element 3 pins 8-11 and element 4 pins 12-15.
///
/// Each element can either be one of the ports ('a' to 'd') or 'n' if it should
/// not be used.
///
/// For example: If you have two Quad Relay Bricklets connected to port A and
/// port B respectively, you could call with ``['a', 'b', 'n', 'n']``.
///
/// Now the pins on the Quad Relay on port A are assigned to 0-3 and the
/// pins on the Quad Relay on port B are assigned to 4-7. It is now possible
/// to call [`set_value`] and control two Bricklets at the same time.
pub async fn set_group(&mut self, group: &[char; 4]) -> Result<(), TinkerforgeError> {
let mut payload = [0; 4];
group.write_to_slice(&mut payload[0..4]);
#[allow(unused_variables)]
let result = self.device.set(u8::from(IndustrialQuadRelayBrickletFunction::SetGroup), &payload).await?;
Ok(())
}
/// Returns the group as set by [`set_group`]
pub async fn get_group(&mut self) -> Result<Box<[char; 4]>, TinkerforgeError> {
let payload = [0; 0];
#[allow(unused_variables)]
let result = self.device.get(u8::from(IndustrialQuadRelayBrickletFunction::GetGroup), &payload).await?;
Ok(Box::<[char; 4]>::from_le_byte_slice(result.body()))
}
/// Returns a bitmask of ports that are available for grouping. For example the
/// value 5 or 0b0101 means: Port A and port C are connected to Bricklets that
/// can be grouped together.
pub async fn get_available_for_group(&mut self) -> Result<u8, TinkerforgeError> {
let payload = [0; 0];
#[allow(unused_variables)]
let result = self.device.get(u8::from(IndustrialQuadRelayBrickletFunction::GetAvailableForGroup), &payload).await?;
Ok(u8::from_le_byte_slice(result.body()))
}
/// Sets the output value with a bitmask, according to the selection mask.
/// The bitmask is 16 bit long, *true* refers to a closed relay and
/// *false* refers to an open relay.
///
/// For example: The values (3, 1) or (0b0011, 0b0001) will close the relay of
/// pin 0, open the relay of pin 1 and leave the others untouched.
///
/// If no groups are used (see [`set_group`]), the pins correspond to the
/// markings on the Industrial Quad Relay Bricklet.
///
/// If groups are used, the pins correspond to the element in the group.
/// Element 1 in the group will get pins 0-3, element 2 pins 4-7, element 3
/// pins 8-11 and element 4 pins 12-15.
///
/// Running monoflop timers for the selected relays will be aborted if this function
/// is called.
pub async fn set_selected_values(&mut self, selection_mask: u16, value_mask: u16) -> Result<(), TinkerforgeError> {
let mut payload = [0; 4];
selection_mask.write_to_slice(&mut payload[0..2]);
value_mask.write_to_slice(&mut payload[2..4]);
#[allow(unused_variables)]
let result = self.device.set(u8::from(IndustrialQuadRelayBrickletFunction::SetSelectedValues), &payload).await?;
Ok(())
}
/// Returns the UID, the UID where the Bricklet is connected to,
/// the position, the hardware and firmware version as well as the
/// device identifier.
///
/// The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port).
/// A Bricklet connected to an [Isolator Bricklet](isolator_bricklet) is always at
/// position 'z'.
///
/// The device identifier numbers can be found [here](device_identifier).
/// |device_identifier_constant|
pub async fn get_identity(&mut self) -> Result<Identity, TinkerforgeError> {
let payload = [0; 0];
#[allow(unused_variables)]
let result = self.device.get(u8::from(IndustrialQuadRelayBrickletFunction::GetIdentity), &payload).await?;
Ok(Identity::from_le_byte_slice(result.body()))
}
}