timer_kit/
delay_queue.rs

1//! A queue of delayed elements. This is ported from `tokio_util::time::delay_queue`.
2//!
3//! See [`DelayQueue`] for more details.
4//!
5//! [`DelayQueue`]: struct@DelayQueue
6
7use futures_util::ready;
8
9use core::ops::{Index, IndexMut};
10use slab::Slab;
11use std::cmp;
12use std::collections::HashMap;
13use std::convert::From;
14use std::fmt;
15use std::fmt::Debug;
16use std::future::Future;
17use std::marker::PhantomData;
18use std::pin::Pin;
19use std::task::{self, Poll, Waker};
20
21use crate::wheel::{self, Wheel};
22use crate::{Duration, Instant, Sleep, Delay};
23
24/// A queue of delayed elements. This is ported from `tokio_util::time::delay_queue`.
25///
26/// Once an element is inserted into the `DelayQueue`, it is yielded once the
27/// specified deadline has been reached.
28///
29/// # Usage
30///
31/// Elements are inserted into `DelayQueue` using the [`insert`] or
32/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
33/// returned. The key is used to remove the entry or to change the deadline at
34/// which it should be yielded back.
35///
36/// Once delays have been configured, the `DelayQueue` is used via its
37/// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its
38/// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the
39/// current task will be notified once the deadline has been reached.
40///
41/// # `Stream` implementation
42///
43/// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have
44/// expired, no items are returned. In this case, `Poll::Pending` is returned and the
45/// current task is registered to be notified once the next item's delay has
46/// expired.
47///
48/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
49/// returns `Poll::Ready(None)`. This indicates that the stream has reached an end.
50/// However, if a new item is inserted *after*, `poll` will once again start
51/// returning items or `Poll::Pending`.
52///
53/// Items are returned ordered by their expirations. Items that are configured
54/// to expire first will be returned first. There are no ordering guarantees
55/// for items configured to expire at the same instant. Also note that delays are
56/// rounded to the closest millisecond.
57///
58/// # Implementation
59///
60/// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally
61/// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same
62/// performance and scalability benefits.
63///
64/// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation,
65/// and allows reuse of the memory allocated for expired entires.
66///
67/// Capacity can be checked using [`capacity`] and allocated preemptively by using
68/// the [`reserve`] method.
69///
70/// # Usage
71///
72/// Using `DelayQueue` to manage cache entries.
73///
74/// ```rust,no_run
75/// // TODO: add example
76/// ```
77///
78/// [`insert`]: method@Self::insert
79/// [`insert_at`]: method@Self::insert_at
80/// [`Key`]: struct@Key
81/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
82/// [`poll_expired`]: method@Self::poll_expired
83/// [`Stream::poll_expired`]: method@Self::poll_expired
84/// [`DelayQueue`]: struct@DelayQueue
85/// [`sleep`]: fn@tokio::time::sleep
86/// [`slab`]: slab
87/// [`capacity`]: method@Self::capacity
88/// [`reserve`]: method@Self::reserve
89#[derive(Debug)]
90pub struct DelayQueue<D: Delay, T> {
91    /// Stores data associated with entries
92    slab: SlabStorage<T>,
93
94    /// Lookup structure tracking all delays in the queue
95    wheel: Wheel<Stack<T>>,
96
97    /// Delays that were inserted when already expired. These cannot be stored
98    /// in the wheel
99    expired: Stack<T>,
100
101    /// Delay expiring when the *first* item in the queue expires
102    delay: Option<Pin<Box<Sleep<D>>>>,
103
104    /// Wheel polling state
105    wheel_now: u64,
106
107    /// Instant at which the timer starts
108    start: D::Instant,
109
110    /// Waker that is invoked when we potentially need to reset the timer.
111    /// Because we lazily create the timer when the first entry is created, we
112    /// need to awaken any poller that polled us before that point.
113    waker: Option<Waker>,
114}
115
116#[derive(Default)]
117struct SlabStorage<T> {
118    inner: Slab<Data<T>>,
119
120    // A `compact` call requires a re-mapping of the `Key`s that were changed
121    // during the `compact` call of the `slab`. Since the keys that were given out
122    // cannot be changed retroactively we need to keep track of these re-mappings.
123    // The keys of `key_map` correspond to the old keys that were given out and
124    // the values to the `Key`s that were re-mapped by the `compact` call.
125    key_map: HashMap<Key, KeyInternal>,
126
127    // Index used to create new keys to hand out.
128    next_key_index: usize,
129
130    // Whether `compact` has been called, necessary in order to decide whether
131    // to include keys in `key_map`.
132    compact_called: bool,
133}
134
135impl<T> SlabStorage<T> {
136    pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> {
137        SlabStorage {
138            inner: Slab::with_capacity(capacity),
139            key_map: HashMap::new(),
140            next_key_index: 0,
141            compact_called: false,
142        }
143    }
144
145    // Inserts data into the inner slab and re-maps keys if necessary
146    pub(crate) fn insert(&mut self, val: Data<T>) -> Key {
147        let mut key = KeyInternal::new(self.inner.insert(val));
148        let key_contained = self.key_map.contains_key(&key.into());
149
150        if key_contained {
151            // It's possible that a `compact` call creates capacity in `self.inner` in
152            // such a way that a `self.inner.insert` call creates a `key` which was
153            // previously given out during an `insert` call prior to the `compact` call.
154            // If `key` is contained in `self.key_map`, we have encountered this exact situation,
155            // We need to create a new key `key_to_give_out` and include the relation
156            // `key_to_give_out` -> `key` in `self.key_map`.
157            let key_to_give_out = self.create_new_key();
158            assert!(!self.key_map.contains_key(&key_to_give_out.into()));
159            self.key_map.insert(key_to_give_out.into(), key);
160            key = key_to_give_out;
161        } else if self.compact_called {
162            // Include an identity mapping in `self.key_map` in order to allow us to
163            // panic if a key that was handed out is removed more than once.
164            self.key_map.insert(key.into(), key);
165        }
166
167        key.into()
168    }
169
170    // Re-map the key in case compact was previously called.
171    // Note: Since we include identity mappings in key_map after compact was called,
172    // we have information about all keys that were handed out. In the case in which
173    // compact was called and we try to remove a Key that was previously removed
174    // we can detect invalid keys if no key is found in `key_map`. This is necessary
175    // in order to prevent situations in which a previously removed key
176    // corresponds to a re-mapped key internally and which would then be incorrectly
177    // removed from the slab.
178    //
179    // Example to illuminate this problem:
180    //
181    // Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we
182    // were to remove 1 again, we would not find it inside `key_map` anymore.
183    // If we were to imply from this that no re-mapping was necessary, we would
184    // incorrectly remove 1 from `self.slab.inner`, which corresponds to the
185    // handed-out key 2.
186    pub(crate) fn remove(&mut self, key: &Key) -> Data<T> {
187        let remapped_key = if self.compact_called {
188            match self.key_map.remove(key) {
189                Some(key_internal) => key_internal,
190                None => panic!("invalid key"),
191            }
192        } else {
193            (*key).into()
194        };
195
196        self.inner.remove(remapped_key.index)
197    }
198
199    pub(crate) fn shrink_to_fit(&mut self) {
200        self.inner.shrink_to_fit();
201        self.key_map.shrink_to_fit();
202    }
203
204    pub(crate) fn compact(&mut self) {
205        if !self.compact_called {
206            for (key, _) in self.inner.iter() {
207                self.key_map.insert(Key::new(key), KeyInternal::new(key));
208            }
209        }
210
211        let mut remapping = HashMap::new();
212        self.inner.compact(|_, from, to| {
213            remapping.insert(from, to);
214            true
215        });
216
217        // At this point `key_map` contains a mapping for every element.
218        for internal_key in self.key_map.values_mut() {
219            if let Some(new_internal_key) = remapping.get(&internal_key.index) {
220                *internal_key = KeyInternal::new(*new_internal_key);
221            }
222        }
223
224        if self.key_map.capacity() > 2 * self.key_map.len() {
225            self.key_map.shrink_to_fit();
226        }
227
228        self.compact_called = true;
229    }
230
231    // Tries to re-map a `Key` that was given out to the user to its
232    // corresponding internal key.
233    fn remap_key(&self, key: &Key) -> Option<KeyInternal> {
234        let key_map = &self.key_map;
235        if self.compact_called {
236            key_map.get(key).copied()
237        } else {
238            Some((*key).into())
239        }
240    }
241
242    fn create_new_key(&mut self) -> KeyInternal {
243        while self.key_map.contains_key(&Key::new(self.next_key_index)) {
244            self.next_key_index = self.next_key_index.wrapping_add(1);
245        }
246
247        KeyInternal::new(self.next_key_index)
248    }
249
250    pub(crate) fn len(&self) -> usize {
251        self.inner.len()
252    }
253
254    pub(crate) fn capacity(&self) -> usize {
255        self.inner.capacity()
256    }
257
258    pub(crate) fn clear(&mut self) {
259        self.inner.clear();
260        self.key_map.clear();
261        self.compact_called = false;
262    }
263
264    pub(crate) fn reserve(&mut self, additional: usize) {
265        self.inner.reserve(additional);
266
267        if self.compact_called {
268            self.key_map.reserve(additional);
269        }
270    }
271
272    pub(crate) fn is_empty(&self) -> bool {
273        self.inner.is_empty()
274    }
275
276    pub(crate) fn contains(&self, key: &Key) -> bool {
277        let remapped_key = self.remap_key(key);
278
279        match remapped_key {
280            Some(internal_key) => self.inner.contains(internal_key.index),
281            None => false,
282        }
283    }
284}
285
286impl<T> fmt::Debug for SlabStorage<T>
287where
288    T: fmt::Debug,
289{
290    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
291        if fmt.alternate() {
292            fmt.debug_map().entries(self.inner.iter()).finish()
293        } else {
294            fmt.debug_struct("Slab")
295                .field("len", &self.len())
296                .field("cap", &self.capacity())
297                .finish()
298        }
299    }
300}
301
302impl<T> Index<Key> for SlabStorage<T> {
303    type Output = Data<T>;
304
305    fn index(&self, key: Key) -> &Self::Output {
306        let remapped_key = self.remap_key(&key);
307
308        match remapped_key {
309            Some(internal_key) => &self.inner[internal_key.index],
310            None => panic!("Invalid index {}", key.index),
311        }
312    }
313}
314
315impl<T> IndexMut<Key> for SlabStorage<T> {
316    fn index_mut(&mut self, key: Key) -> &mut Data<T> {
317        let remapped_key = self.remap_key(&key);
318
319        match remapped_key {
320            Some(internal_key) => &mut self.inner[internal_key.index],
321            None => panic!("Invalid index {}", key.index),
322        }
323    }
324}
325
326/// An entry in `DelayQueue` that has expired and been removed.
327///
328/// Values are returned by [`DelayQueue::poll_expired`].
329///
330/// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired
331#[derive(Debug)]
332pub struct Expired<T, I: Instant> {
333    /// The data stored in the queue
334    data: T,
335
336    /// The expiration time
337    deadline: I,
338
339    /// The key associated with the entry
340    key: Key,
341}
342
343/// Token to a value stored in a `DelayQueue`.
344///
345/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
346/// documentation for more details.
347///
348/// [`DelayQueue`]: struct@DelayQueue
349/// [`DelayQueue::insert`]: method@DelayQueue::insert
350#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
351pub struct Key {
352    index: usize,
353}
354
355// Whereas `Key` is given out to users that use `DelayQueue`, internally we use
356// `KeyInternal` as the key type in order to make the logic of mapping between keys
357// as a result of `compact` calls clearer.
358#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
359struct KeyInternal {
360    index: usize,
361}
362
363#[derive(Debug)]
364struct Stack<T> {
365    /// Head of the stack
366    head: Option<Key>,
367    _p: PhantomData<fn() -> T>,
368}
369
370#[derive(Debug)]
371struct Data<T> {
372    /// The data being stored in the queue and will be returned at the requested
373    /// instant.
374    inner: T,
375
376    /// The instant at which the item is returned.
377    when: u64,
378
379    /// Set to true when stored in the `expired` queue
380    expired: bool,
381
382    /// Next entry in the stack
383    next: Option<Key>,
384
385    /// Previous entry in the stack
386    prev: Option<Key>,
387}
388
389/// Maximum number of entries the queue can handle
390const MAX_ENTRIES: usize = (1 << 30) - 1;
391
392impl<D, T> DelayQueue<D, T> 
393where
394    D: Delay,
395    D::Instant: Unpin,
396{
397    /// Creates a new, empty, `DelayQueue`.
398    ///
399    /// The queue will not allocate storage until items are inserted into it.
400    ///
401    /// # Examples
402    ///
403    /// ```rust
404    /// # use tokio_util::time::DelayQueue;
405    /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
406    /// ```
407    pub fn new() -> DelayQueue<D, T> {
408        DelayQueue::with_capacity(0)
409    }
410
411    /// Creates a new, empty, `DelayQueue` with the specified capacity.
412    ///
413    /// The queue will be able to hold at least `capacity` elements without
414    /// reallocating. If `capacity` is 0, the queue will not allocate for
415    /// storage.
416    ///
417    /// # Examples
418    ///
419    /// ```rust,ignore
420    /// # use tokio_util::time::DelayQueue;
421    /// # use std::time::Duration;
422    ///
423    /// # #[tokio::main]
424    /// # async fn main() {
425    /// let mut delay_queue = DelayQueue::with_capacity(10);
426    ///
427    /// // These insertions are done without further allocation
428    /// for i in 0..10 {
429    ///     delay_queue.insert(i, Duration::from_secs(i));
430    /// }
431    ///
432    /// // This will make the queue allocate additional storage
433    /// delay_queue.insert(11, Duration::from_secs(11));
434    /// # }
435    /// ```
436    pub fn with_capacity(capacity: usize) -> DelayQueue<D, T> {
437        DelayQueue {
438            wheel: Wheel::new(),
439            slab: SlabStorage::with_capacity(capacity),
440            expired: Stack::default(),
441            delay: None,
442            wheel_now: 0,
443            start: Instant::now(),
444            waker: None,
445        }
446    }
447
448    /// Inserts `value` into the queue set to expire at a specific instant in
449    /// time.
450    ///
451    /// This function is identical to `insert`, but takes an `Instant` instead
452    /// of a `Duration`.
453    ///
454    /// `value` is stored in the queue until `when` is reached. At which point,
455    /// `value` will be returned from [`poll_expired`]. If `when` has already been
456    /// reached, then `value` is immediately made available to poll.
457    ///
458    /// The return value represents the insertion and is used as an argument to
459    /// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once
460    /// `value` is removed from the queue either by calling [`poll_expired`] after
461    /// `when` is reached or by calling [`remove`]. At this point, the caller
462    /// must take care to not use the returned [`Key`] again as it may reference
463    /// a different item in the queue.
464    ///
465    /// See [type] level documentation for more details.
466    ///
467    /// # Panics
468    ///
469    /// This function panics if `when` is too far in the future.
470    ///
471    /// # Examples
472    ///
473    /// Basic usage
474    ///
475    /// ```rust,ignore
476    /// use tokio::time::{Duration, Instant};
477    /// use tokio_util::time::DelayQueue;
478    ///
479    /// # #[tokio::main]
480    /// # async fn main() {
481    /// let mut delay_queue = DelayQueue::new();
482    /// let key = delay_queue.insert_at(
483    ///     "foo", Instant::now() + Duration::from_secs(5));
484    ///
485    /// // Remove the entry
486    /// let item = delay_queue.remove(&key);
487    /// assert_eq!(*item.get_ref(), "foo");
488    /// # }
489    /// ```
490    ///
491    /// [`poll_expired`]: method@Self::poll_expired
492    /// [`remove`]: method@Self::remove
493    /// [`reset`]: method@Self::reset
494    /// [`Key`]: struct@Key
495    /// [type]: #
496    #[track_caller]
497    pub fn insert_at(&mut self, value: T, when: D::Instant) -> Key {
498        assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
499
500        // Normalize the deadline. Values cannot be set to expire in the past.
501        let when = self.normalize_deadline(when);
502
503        // Insert the value in the store
504        let key = self.slab.insert(Data {
505            inner: value,
506            when,
507            expired: false,
508            next: None,
509            prev: None,
510        });
511
512        self.insert_idx(when, key);
513
514        // Set a new delay if the current's deadline is later than the one of the new item
515        let should_set_delay = if let Some(ref delay) = self.delay {
516            let current_exp = self.normalize_deadline(delay.deadline());
517            current_exp > when
518        } else {
519            true
520        };
521
522        if should_set_delay {
523            if let Some(waker) = self.waker.take() {
524                waker.wake();
525            }
526
527            let delay_time = self.start + Duration::from_millis(when);
528            if let Some(ref mut delay) = &mut self.delay {
529                delay.as_mut().reset(delay_time);
530            } else {
531                let delay = Sleep::new_until(delay_time);
532                self.delay = Some(Box::pin(delay));
533            }
534        }
535
536        key
537    }
538
539    /// Attempts to pull out the next value of the delay queue, registering the
540    /// current task for wakeup if the value is not yet available, and returning
541    /// `None` if the queue is exhausted.
542    pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T, D::Instant>>> {
543        if !self
544            .waker
545            .as_ref()
546            .map(|w| w.will_wake(cx.waker()))
547            .unwrap_or(false)
548        {
549            self.waker = Some(cx.waker().clone());
550        }
551
552        let item = ready!(self.poll_idx(cx));
553        Poll::Ready(item.map(|key| {
554            let data = self.slab.remove(&key);
555            debug_assert!(data.next.is_none());
556            debug_assert!(data.prev.is_none());
557
558            Expired {
559                key,
560                data: data.inner,
561                deadline: self.start + Duration::from_millis(data.when),
562            }
563        }))
564    }
565
566    /// Inserts `value` into the queue set to expire after the requested duration
567    /// elapses.
568    ///
569    /// This function is identical to `insert_at`, but takes a `Duration`
570    /// instead of an `Instant`.
571    ///
572    /// `value` is stored in the queue until `timeout` duration has
573    /// elapsed after `insert` was called. At that point, `value` will
574    /// be returned from [`poll_expired`]. If `timeout` is a `Duration` of
575    /// zero, then `value` is immediately made available to poll.
576    ///
577    /// The return value represents the insertion and is used as an
578    /// argument to [`remove`] and [`reset`]. Note that [`Key`] is a
579    /// token and is reused once `value` is removed from the queue
580    /// either by calling [`poll_expired`] after `timeout` has elapsed
581    /// or by calling [`remove`]. At this point, the caller must not
582    /// use the returned [`Key`] again as it may reference a different
583    /// item in the queue.
584    ///
585    /// See [type] level documentation for more details.
586    ///
587    /// # Panics
588    ///
589    /// This function panics if `timeout` is greater than the maximum
590    /// duration supported by the timer in the current `Runtime`.
591    ///
592    /// # Examples
593    ///
594    /// Basic usage
595    ///
596    /// ```rust,ignore
597    /// use tokio_util::time::DelayQueue;
598    /// use std::time::Duration;
599    ///
600    /// # #[tokio::main]
601    /// # async fn main() {
602    /// let mut delay_queue = DelayQueue::new();
603    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
604    ///
605    /// // Remove the entry
606    /// let item = delay_queue.remove(&key);
607    /// assert_eq!(*item.get_ref(), "foo");
608    /// # }
609    /// ```
610    ///
611    /// [`poll_expired`]: method@Self::poll_expired
612    /// [`remove`]: method@Self::remove
613    /// [`reset`]: method@Self::reset
614    /// [`Key`]: struct@Key
615    /// [type]: #
616    #[track_caller]
617    pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
618        self.insert_at(value, D::Instant::now() + timeout)
619    }
620
621    #[track_caller]
622    fn insert_idx(&mut self, when: u64, key: Key) {
623        use self::wheel::{InsertError, Stack};
624
625        // Register the deadline with the timer wheel
626        match self.wheel.insert(when, key, &mut self.slab) {
627            Ok(_) => {}
628            Err((_, InsertError::Elapsed)) => {
629                self.slab[key].expired = true;
630                // The delay is already expired, store it in the expired queue
631                self.expired.push(key, &mut self.slab);
632            }
633            Err((_, err)) => panic!("invalid deadline; err={:?}", err),
634        }
635    }
636
637    /// Removes the key from the expired queue or the timer wheel
638    /// depending on its expiration status.
639    ///
640    /// # Panics
641    ///
642    /// Panics if the key is not contained in the expired queue or the wheel.
643    #[track_caller]
644    fn remove_key(&mut self, key: &Key) {
645        use crate::wheel::Stack;
646
647        // Special case the `expired` queue
648        if self.slab[*key].expired {
649            self.expired.remove(key, &mut self.slab);
650        } else {
651            self.wheel.remove(key, &mut self.slab);
652        }
653    }
654
655    /// Removes the item associated with `key` from the queue.
656    ///
657    /// There must be an item associated with `key`. The function returns the
658    /// removed item as well as the `Instant` at which it will the delay will
659    /// have expired.
660    ///
661    /// # Panics
662    ///
663    /// The function panics if `key` is not contained by the queue.
664    ///
665    /// # Examples
666    ///
667    /// Basic usage
668    ///
669    /// ```rust,ignore
670    /// use tokio_util::time::DelayQueue;
671    /// use std::time::Duration;
672    ///
673    /// # #[tokio::main]
674    /// # async fn main() {
675    /// let mut delay_queue = DelayQueue::new();
676    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
677    ///
678    /// // Remove the entry
679    /// let item = delay_queue.remove(&key);
680    /// assert_eq!(*item.get_ref(), "foo");
681    /// # }
682    /// ```
683    #[track_caller]
684    pub fn remove(&mut self, key: &Key) -> Expired<T, D::Instant> {
685        let prev_deadline = self.next_deadline();
686
687        self.remove_key(key);
688        let data = self.slab.remove(key);
689
690        let next_deadline = self.next_deadline();
691        if prev_deadline != next_deadline {
692            match (next_deadline, &mut self.delay) {
693                (None, _) => self.delay = None,
694                (Some(deadline), Some(delay)) => delay.as_mut().reset(deadline),
695                (Some(deadline), None) => self.delay = Some(Box::pin(Sleep::new_until(deadline))),
696            }
697        }
698
699        Expired {
700            key: Key::new(key.index),
701            data: data.inner,
702            deadline: self.start + Duration::from_millis(data.when),
703        }
704    }
705
706    /// Attempts to remove the item associated with `key` from the queue.
707    ///
708    /// Removes the item associated with `key`, and returns it along with the
709    /// `Instant` at which it would have expired, if it exists.
710    ///
711    /// Returns `None` if `key` is not in the queue.
712    ///
713    /// # Examples
714    ///
715    /// Basic usage
716    ///
717    /// ```rust,ignore
718    /// use tokio_util::time::DelayQueue;
719    /// use std::time::Duration;
720    ///
721    /// # #[tokio::main(flavor = "current_thread")]
722    /// # async fn main() {
723    /// let mut delay_queue = DelayQueue::new();
724    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
725    ///
726    /// // The item is in the queue, `try_remove` returns `Some(Expired("foo"))`.
727    /// let item = delay_queue.try_remove(&key);
728    /// assert_eq!(item.unwrap().into_inner(), "foo");
729    ///
730    /// // The item is not in the queue anymore, `try_remove` returns `None`.
731    /// let item = delay_queue.try_remove(&key);
732    /// assert!(item.is_none());
733    /// # }
734    /// ```
735    pub fn try_remove(&mut self, key: &Key) -> Option<Expired<T, D::Instant>> {
736        if self.slab.contains(key) {
737            Some(self.remove(key))
738        } else {
739            None
740        }
741    }
742
743    /// Sets the delay of the item associated with `key` to expire at `when`.
744    ///
745    /// This function is identical to `reset` but takes an `Instant` instead of
746    /// a `Duration`.
747    ///
748    /// The item remains in the queue but the delay is set to expire at `when`.
749    /// If `when` is in the past, then the item is immediately made available to
750    /// the caller.
751    ///
752    /// # Panics
753    ///
754    /// This function panics if `when` is too far in the future or if `key` is
755    /// not contained by the queue.
756    ///
757    /// # Examples
758    ///
759    /// Basic usage
760    ///
761    /// ```rust,ignore
762    /// use tokio::time::{Duration, Instant};
763    /// use tokio_util::time::DelayQueue;
764    ///
765    /// # #[tokio::main]
766    /// # async fn main() {
767    /// let mut delay_queue = DelayQueue::new();
768    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
769    ///
770    /// // "foo" is scheduled to be returned in 5 seconds
771    ///
772    /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
773    ///
774    /// // "foo" is now scheduled to be returned in 10 seconds
775    /// # }
776    /// ```
777    #[track_caller]
778    pub fn reset_at(&mut self, key: &Key, when: D::Instant) {
779        self.remove_key(key);
780
781        // Normalize the deadline. Values cannot be set to expire in the past.
782        let when = self.normalize_deadline(when);
783
784        self.slab[*key].when = when;
785        self.slab[*key].expired = false;
786
787        self.insert_idx(when, *key);
788
789        let next_deadline = self.next_deadline();
790        if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
791            // This should awaken us if necessary (ie, if already expired)
792            delay.as_mut().reset(deadline);
793        }
794    }
795
796    /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation.
797    /// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab
798    /// to the number of elements still contained in it, because elements cannot be moved to a different
799    /// index. To decrease the capacity to the size of the slab use [`compact`].
800    ///
801    /// This function can take O(n) time even when the capacity cannot be reduced or the allocation is
802    /// shrunk in place. Repeated calls run in O(1) though.
803    ///
804    /// [`compact`]: method@Self::compact
805    pub fn shrink_to_fit(&mut self) {
806        self.slab.shrink_to_fit();
807    }
808
809    /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation,
810    /// to the number of elements that are contained in it.
811    ///
812    /// This methods runs in O(n).
813    ///
814    /// # Examples
815    ///
816    /// Basic usage
817    ///
818    /// ```rust,ignore
819    /// use tokio_util::time::DelayQueue;
820    /// use std::time::Duration;
821    ///
822    /// # #[tokio::main]
823    /// # async fn main() {
824    /// let mut delay_queue = DelayQueue::with_capacity(10);
825    ///
826    /// let key1 = delay_queue.insert(5, Duration::from_secs(5));
827    /// let key2 = delay_queue.insert(10, Duration::from_secs(10));
828    /// let key3 = delay_queue.insert(15, Duration::from_secs(15));
829    ///
830    /// delay_queue.remove(&key2);
831    ///
832    /// delay_queue.compact();
833    /// assert_eq!(delay_queue.capacity(), 2);
834    /// # }
835    /// ```
836    pub fn compact(&mut self) {
837        self.slab.compact();
838    }
839
840    /// Returns the next time to poll as determined by the wheel
841    fn next_deadline(&mut self) -> Option<D::Instant> {
842        self.wheel
843            .poll_at()
844            .map(|poll_at| self.start + Duration::from_millis(poll_at))
845    }
846
847    /// Sets the delay of the item associated with `key` to expire after
848    /// `timeout`.
849    ///
850    /// This function is identical to `reset_at` but takes a `Duration` instead
851    /// of an `Instant`.
852    ///
853    /// The item remains in the queue but the delay is set to expire after
854    /// `timeout`. If `timeout` is zero, then the item is immediately made
855    /// available to the caller.
856    ///
857    /// # Panics
858    ///
859    /// This function panics if `timeout` is greater than the maximum supported
860    /// duration or if `key` is not contained by the queue.
861    ///
862    /// # Examples
863    ///
864    /// Basic usage
865    ///
866    /// ```rust,ignore
867    /// use tokio_util::time::DelayQueue;
868    /// use std::time::Duration;
869    ///
870    /// # #[tokio::main]
871    /// # async fn main() {
872    /// let mut delay_queue = DelayQueue::new();
873    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
874    ///
875    /// // "foo" is scheduled to be returned in 5 seconds
876    ///
877    /// delay_queue.reset(&key, Duration::from_secs(10));
878    ///
879    /// // "foo"is now scheduled to be returned in 10 seconds
880    /// # }
881    /// ```
882    #[track_caller]
883    pub fn reset(&mut self, key: &Key, timeout: Duration) {
884        self.reset_at(key, D::Instant::now() + timeout);
885    }
886
887    /// Clears the queue, removing all items.
888    ///
889    /// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`.
890    ///
891    /// Note that this method has no effect on the allocated capacity.
892    ///
893    /// [`poll_expired`]: method@Self::poll_expired
894    ///
895    /// # Examples
896    ///
897    /// ```rust,ignore
898    /// use tokio_util::time::DelayQueue;
899    /// use std::time::Duration;
900    ///
901    /// # #[tokio::main]
902    /// # async fn main() {
903    /// let mut delay_queue = DelayQueue::new();
904    ///
905    /// delay_queue.insert("foo", Duration::from_secs(5));
906    ///
907    /// assert!(!delay_queue.is_empty());
908    ///
909    /// delay_queue.clear();
910    ///
911    /// assert!(delay_queue.is_empty());
912    /// # }
913    /// ```
914    pub fn clear(&mut self) {
915        self.slab.clear();
916        self.expired = Stack::default();
917        self.wheel = Wheel::new();
918        self.delay = None;
919    }
920
921    /// Returns the number of elements the queue can hold without reallocating.
922    ///
923    /// # Examples
924    ///
925    /// ```rust,ignore
926    /// use tokio_util::time::DelayQueue;
927    ///
928    /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
929    /// assert_eq!(delay_queue.capacity(), 10);
930    /// ```
931    pub fn capacity(&self) -> usize {
932        self.slab.capacity()
933    }
934
935    /// Returns the number of elements currently in the queue.
936    ///
937    /// # Examples
938    ///
939    /// ```rust,ignore
940    /// use tokio_util::time::DelayQueue;
941    /// use std::time::Duration;
942    ///
943    /// # #[tokio::main]
944    /// # async fn main() {
945    /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
946    /// assert_eq!(delay_queue.len(), 0);
947    /// delay_queue.insert(3, Duration::from_secs(5));
948    /// assert_eq!(delay_queue.len(), 1);
949    /// # }
950    /// ```
951    pub fn len(&self) -> usize {
952        self.slab.len()
953    }
954
955    /// Reserves capacity for at least `additional` more items to be queued
956    /// without allocating.
957    ///
958    /// `reserve` does nothing if the queue already has sufficient capacity for
959    /// `additional` more values. If more capacity is required, a new segment of
960    /// memory will be allocated and all existing values will be copied into it.
961    /// As such, if the queue is already very large, a call to `reserve` can end
962    /// up being expensive.
963    ///
964    /// The queue may reserve more than `additional` extra space in order to
965    /// avoid frequent reallocations.
966    ///
967    /// # Panics
968    ///
969    /// Panics if the new capacity exceeds the maximum number of entries the
970    /// queue can contain.
971    ///
972    /// # Examples
973    ///
974    /// ```rust,ignore
975    /// use tokio_util::time::DelayQueue;
976    /// use std::time::Duration;
977    ///
978    /// # #[tokio::main]
979    /// # async fn main() {
980    /// let mut delay_queue = DelayQueue::new();
981    ///
982    /// delay_queue.insert("hello", Duration::from_secs(10));
983    /// delay_queue.reserve(10);
984    ///
985    /// assert!(delay_queue.capacity() >= 11);
986    /// # }
987    /// ```
988    #[track_caller]
989    pub fn reserve(&mut self, additional: usize) {
990        assert!(
991            self.slab.capacity() + additional <= MAX_ENTRIES,
992            "max queue capacity exceeded"
993        );
994        self.slab.reserve(additional);
995    }
996
997    /// Returns `true` if there are no items in the queue.
998    ///
999    /// Note that this function returns `false` even if all items have not yet
1000    /// expired and a call to `poll` will return `Poll::Pending`.
1001    ///
1002    /// # Examples
1003    ///
1004    /// ```rust,ignore
1005    /// use tokio_util::time::DelayQueue;
1006    /// use std::time::Duration;
1007    ///
1008    /// # #[tokio::main]
1009    /// # async fn main() {
1010    /// let mut delay_queue = DelayQueue::new();
1011    /// assert!(delay_queue.is_empty());
1012    ///
1013    /// delay_queue.insert("hello", Duration::from_secs(5));
1014    /// assert!(!delay_queue.is_empty());
1015    /// # }
1016    /// ```
1017    pub fn is_empty(&self) -> bool {
1018        self.slab.is_empty()
1019    }
1020
1021    /// Polls the queue, returning the index of the next slot in the slab that
1022    /// should be returned.
1023    ///
1024    /// A slot should be returned when the associated deadline has been reached.
1025    fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> {
1026        use self::wheel::Stack;
1027
1028        let expired = self.expired.pop(&mut self.slab);
1029
1030        if expired.is_some() {
1031            return Poll::Ready(expired);
1032        }
1033
1034        loop {
1035            if let Some(ref mut delay) = self.delay {
1036                ready!(Pin::new(&mut *delay).poll(cx));
1037                let now = crate::util::ms(delay.deadline() - self.start, crate::util::Round::Down);
1038
1039                self.wheel_now = now;
1040            }
1041
1042            // We poll the wheel to get the next value out before finding the next deadline.
1043            let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab);
1044
1045            self.delay = self.next_deadline().map(|when| Box::pin(Sleep::new_until(when)));
1046
1047            if let Some(idx) = wheel_idx {
1048                return Poll::Ready(Some(idx));
1049            }
1050
1051            if self.delay.is_none() {
1052                return Poll::Ready(None);
1053            }
1054        }
1055    }
1056
1057    fn normalize_deadline(&self, when: D::Instant) -> u64 {
1058        let when = if when < self.start {
1059            0
1060        } else {
1061            crate::util::ms(when - self.start, crate::util::Round::Up)
1062        };
1063
1064        cmp::max(when, self.wheel.elapsed())
1065    }
1066}
1067
1068// We never put `T` in a `Pin`...
1069impl<D, T> Unpin for DelayQueue<D, T> where D: Delay {}
1070
1071impl<D, T> Default for DelayQueue<D, T> 
1072where
1073    D: Delay,
1074    D::Instant: Unpin,
1075{
1076    fn default() -> DelayQueue<D, T> {
1077        DelayQueue::new()
1078    }
1079}
1080
1081impl<D, T> futures_util::Stream for DelayQueue<D, T> 
1082where
1083    D: Delay,
1084    D::Instant: Unpin,
1085{
1086    // DelayQueue seems much more specific, where a user may care that it
1087    // has reached capacity, so return those errors instead of panicking.
1088    type Item = Expired<T, D::Instant>;
1089
1090    fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
1091        DelayQueue::poll_expired(self.get_mut(), cx)
1092    }
1093}
1094
1095impl<T> wheel::Stack for Stack<T> {
1096    type Owned = Key;
1097    type Borrowed = Key;
1098    type Store = SlabStorage<T>;
1099
1100    fn is_empty(&self) -> bool {
1101        self.head.is_none()
1102    }
1103
1104    fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
1105        // Ensure the entry is not already in a stack.
1106        debug_assert!(store[item].next.is_none());
1107        debug_assert!(store[item].prev.is_none());
1108
1109        // Remove the old head entry
1110        let old = self.head.take();
1111
1112        if let Some(idx) = old {
1113            store[idx].prev = Some(item);
1114        }
1115
1116        store[item].next = old;
1117        self.head = Some(item);
1118    }
1119
1120    fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
1121        if let Some(key) = self.head {
1122            self.head = store[key].next;
1123
1124            if let Some(idx) = self.head {
1125                store[idx].prev = None;
1126            }
1127
1128            store[key].next = None;
1129            debug_assert!(store[key].prev.is_none());
1130
1131            Some(key)
1132        } else {
1133            None
1134        }
1135    }
1136
1137    #[track_caller]
1138    fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
1139        let key = *item;
1140        assert!(store.contains(item));
1141
1142        // Ensure that the entry is in fact contained by the stack
1143        debug_assert!({
1144            // This walks the full linked list even if an entry is found.
1145            let mut next = self.head;
1146            let mut contains = false;
1147
1148            while let Some(idx) = next {
1149                let data = &store[idx];
1150
1151                if idx == *item {
1152                    debug_assert!(!contains);
1153                    contains = true;
1154                }
1155
1156                next = data.next;
1157            }
1158
1159            contains
1160        });
1161
1162        if let Some(next) = store[key].next {
1163            store[next].prev = store[key].prev;
1164        }
1165
1166        if let Some(prev) = store[key].prev {
1167            store[prev].next = store[key].next;
1168        } else {
1169            self.head = store[key].next;
1170        }
1171
1172        store[key].next = None;
1173        store[key].prev = None;
1174    }
1175
1176    fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
1177        store[*item].when
1178    }
1179}
1180
1181impl<T> Default for Stack<T> {
1182    fn default() -> Stack<T> {
1183        Stack {
1184            head: None,
1185            _p: PhantomData,
1186        }
1187    }
1188}
1189
1190impl Key {
1191    pub(crate) fn new(index: usize) -> Key {
1192        Key { index }
1193    }
1194}
1195
1196impl KeyInternal {
1197    pub(crate) fn new(index: usize) -> KeyInternal {
1198        KeyInternal { index }
1199    }
1200}
1201
1202impl From<Key> for KeyInternal {
1203    fn from(item: Key) -> Self {
1204        KeyInternal::new(item.index)
1205    }
1206}
1207
1208impl From<KeyInternal> for Key {
1209    fn from(item: KeyInternal) -> Self {
1210        Key::new(item.index)
1211    }
1212}
1213
1214impl<T, I: Instant> Expired<T, I> {
1215    /// Returns a reference to the inner value.
1216    pub fn get_ref(&self) -> &T {
1217        &self.data
1218    }
1219
1220    /// Returns a mutable reference to the inner value.
1221    pub fn get_mut(&mut self) -> &mut T {
1222        &mut self.data
1223    }
1224
1225    /// Consumes `self` and returns the inner value.
1226    pub fn into_inner(self) -> T {
1227        self.data
1228    }
1229
1230    /// Returns the deadline that the expiration was set to.
1231    pub fn deadline(&self) -> I {
1232        self.deadline
1233    }
1234
1235    /// Returns the key that the expiration is indexed by.
1236    pub fn key(&self) -> Key {
1237        self.key
1238    }
1239}