1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
//! A simplified implementation of the `bytes` crate, with different features, less safety. //! //! #Examples //! //! ``` //! use timely_bytes::rc::Bytes; //! //! let bytes = vec![0u8; 1024]; //! let mut shared1 = Bytes::from(bytes); //! let mut shared2 = shared1.extract_to(100); //! let mut shared3 = shared1.extract_to(100); //! let mut shared4 = shared2.extract_to(60); //! //! assert_eq!(shared1.len(), 824); //! assert_eq!(shared2.len(), 40); //! assert_eq!(shared3.len(), 100); //! assert_eq!(shared4.len(), 60); //! //! for byte in shared1.iter_mut() { *byte = 1u8; } //! for byte in shared2.iter_mut() { *byte = 2u8; } //! for byte in shared3.iter_mut() { *byte = 3u8; } //! for byte in shared4.iter_mut() { *byte = 4u8; } //! //! drop(shared1); //! drop(shared2); //! drop(shared3); //! //! if let Ok(bytes) = shared4.try_recover::<Vec<u8>>() { //! assert_eq!(bytes[200..1024].to_vec(), [1u8;824].to_vec()); //! assert_eq!(bytes[60..100].to_vec(), [2u8;40].to_vec()); //! assert_eq!(bytes[100..200].to_vec(), [3u8;100].to_vec()); //! assert_eq!(bytes[0..60].to_vec(), [4u8;60].to_vec()); //! } //! else { //! panic!("unrecoverable!"); //! } //! ``` #![forbid(missing_docs)] /// An `Rc`-backed mutable byte slice backed by a common allocation. pub mod rc { use std::ops::{Deref, DerefMut}; use std::rc::Rc; use std::any::Any; /// A thread-local byte buffer backed by a shared allocation. pub struct Bytes { /// Pointer to the start of this slice (not the allocation). ptr: *mut u8, /// Length of this slice. len: usize, /// Shared access to underlying resources. /// /// Importantly, this is unavailable for as long as the struct exists, which may /// prevent shared access to ptr[0 .. len]. I'm not sure I understand Rust's rules /// enough to make a strong statement about this. sequestered: Rc<Box<Any>>, } impl Bytes { /// Create a new instance from a byte allocation. pub fn from<B>(bytes: B) -> Bytes where B: DerefMut<Target=[u8]>+'static { let mut boxed = Box::new(bytes) as Box<Any>; let ptr = boxed.downcast_mut::<B>().unwrap().as_mut_ptr(); let len = boxed.downcast_ref::<B>().unwrap().len(); let sequestered = Rc::new(boxed); Bytes { ptr, len, sequestered, } } /// Extracts [0, index) into a new `Bytes` which is returned, updating `self`. /// /// #Safety /// /// This method uses an `unsafe` region to advance the pointer by `index`. It first /// tests `index` against `self.len`, which should ensure that the offset is in-bounds. pub fn extract_to(&mut self, index: usize) -> Bytes { assert!(index <= self.len); let result = Bytes { ptr: self.ptr, len: index, sequestered: self.sequestered.clone(), }; unsafe { self.ptr = self.ptr.offset(index as isize); } self.len -= index; result } /// Recover the underlying storage. /// /// This method either results in the underlying storage if it is uniquely held, or the /// input `Bytes` if it is not uniquely held. pub fn try_recover<B>(self) -> Result<B, Bytes> where B: DerefMut<Target=[u8]>+'static { match Rc::try_unwrap(self.sequestered) { Ok(bytes) => Ok(*bytes.downcast::<B>().unwrap()), Err(rc) => Err(Bytes { ptr: self.ptr, len: self.len, sequestered: rc, }), } } } impl Deref for Bytes { type Target = [u8]; fn deref(&self) -> &[u8] { unsafe { ::std::slice::from_raw_parts(self.ptr, self.len) } } } impl DerefMut for Bytes { fn deref_mut(&mut self) -> &mut [u8] { unsafe { ::std::slice::from_raw_parts_mut(self.ptr, self.len) } } } } /// An `Arc`-backed mutable byte slice backed by a common allocation. pub mod arc { use std::ops::{Deref, DerefMut}; use std::sync::Arc; use std::any::Any; /// A thread-safe byte buffer backed by a shared allocation. pub struct Bytes { /// Pointer to the start of this slice (not the allocation). ptr: *mut u8, /// Length of this slice. len: usize, /// Shared access to underlying resources. /// /// Importantly, this is unavailable for as long as the struct exists, which may /// prevent shared access to ptr[0 .. len]. I'm not sure I understand Rust's rules /// enough to make a strong statement about this. sequestered: Arc<Box<Any>>, } unsafe impl Send for Bytes { } impl Bytes { /// Create a new instance from a byte allocation. pub fn from<B>(bytes: B) -> Bytes where B : DerefMut<Target=[u8]>+'static { let mut boxed = Box::new(bytes) as Box<Any>; let ptr = boxed.downcast_mut::<B>().unwrap().as_mut_ptr(); let len = boxed.downcast_ref::<B>().unwrap().len(); let sequestered = Arc::new(boxed); Bytes { ptr, len, sequestered, } } /// Extracts [0, index) into a new `Bytes` which is returned, updating `self`. /// /// #Safety /// /// This method uses an `unsafe` region to advance the pointer by `index`. It first /// tests `index` against `self.len`, which should ensure that the offset is in-bounds. pub fn extract_to(&mut self, index: usize) -> Bytes { assert!(index <= self.len); let result = Bytes { ptr: self.ptr, len: index, sequestered: self.sequestered.clone(), }; unsafe { self.ptr = self.ptr.offset(index as isize); } self.len -= index; result } /// Recover the underlying storage. /// /// This method either results in the underlying storage if it is uniquely held, or the /// input `Bytes` if it is not uniquely held. /// /// #Examples /// /// ``` /// use timely_bytes::arc::Bytes; /// /// let bytes = vec![0u8; 1024]; /// let mut shared1 = Bytes::from(bytes); /// let mut shared2 = shared1.extract_to(100); /// let mut shared3 = shared1.extract_to(100); /// let mut shared4 = shared2.extract_to(60); /// /// drop(shared1); /// drop(shared2); /// drop(shared4); /// let recovered = shared3.try_recover::<Vec<u8>>().ok().expect("recovery failed"); /// assert!(recovered.len() == 1024); /// ``` pub fn try_recover<B>(self) -> Result<B, Bytes> where B: DerefMut<Target=[u8]>+'static { // println!("Trying recovery; strong count: {:?}", Arc::strong_count(&self.sequestered)); match Arc::try_unwrap(self.sequestered) { Ok(bytes) => Ok(*bytes.downcast::<B>().unwrap()), Err(arc) => Err(Bytes { ptr: self.ptr, len: self.len, sequestered: arc, }), } } /// Regenerates the Bytes if it is uniquely held. /// /// If uniquely held, this method recovers the initial pointer and length /// of the sequestered allocation and re-initialized the Bytes. The return /// value indicates whether this occurred. /// /// #Examples /// /// ``` /// use timely_bytes::arc::Bytes; /// /// let bytes = vec![0u8; 1024]; /// let mut shared1 = Bytes::from(bytes); /// let mut shared2 = shared1.extract_to(100); /// let mut shared3 = shared1.extract_to(100); /// let mut shared4 = shared2.extract_to(60); /// /// drop(shared1); /// drop(shared2); /// drop(shared4); /// assert!(shared3.try_regenerate::<Vec<u8>>()); /// assert!(shared3.len() == 1024); /// ``` pub fn try_regenerate<B>(&mut self) -> bool where B: DerefMut<Target=[u8]>+'static { if let Some(boxed) = Arc::get_mut(&mut self.sequestered) { let downcast = boxed.downcast_mut::<B>().expect("Downcast failed"); self.ptr = downcast.as_mut_ptr(); self.len = downcast.len(); true } else { false } } /// Attempts to merge adjacent slices from the same allocation. /// /// If the merge succeeds then `other.len` is added to `self` and the result is `Ok(())`. /// If the merge fails self is unmodified and the result is `Err(other)`, returning the /// bytes supplied as input. /// /// #Examples /// /// ``` /// use timely_bytes::arc::Bytes; /// /// let bytes = vec![0u8; 1024]; /// let mut shared1 = Bytes::from(bytes); /// let mut shared2 = shared1.extract_to(100); /// let mut shared3 = shared1.extract_to(100); /// let mut shared4 = shared2.extract_to(60); /// /// // memory in slabs [4, 2, 3, 1]: merge back in arbitrary order. /// shared2.try_merge(shared3).ok().expect("Failed to merge 2 and 3"); /// shared2.try_merge(shared1).ok().expect("Failed to merge 23 and 1"); /// shared4.try_merge(shared2).ok().expect("Failed to merge 4 and 231"); /// ``` pub fn try_merge(&mut self, other: Bytes) -> Result<(), Bytes> { use ::std::sync::Arc; if Arc::ptr_eq(&self.sequestered, &other.sequestered) && ::std::ptr::eq(unsafe { self.ptr.offset(self.len as isize) }, other.ptr) { self.len += other.len; Ok(()) } else { Err(other) } } } impl Deref for Bytes { type Target = [u8]; fn deref(&self) -> &[u8] { unsafe { ::std::slice::from_raw_parts(self.ptr, self.len) } } } impl DerefMut for Bytes { fn deref_mut(&mut self) -> &mut [u8] { unsafe { ::std::slice::from_raw_parts_mut(self.ptr, self.len) } } } }