Trait timely::dataflow::operators::generic::operator::Operator[][src]

pub trait Operator<G: Scope, D1: Data> {
    fn unary_frontier<D2, B, L, P>(
        &self,
        pact: P,
        name: &str,
        constructor: B
    ) -> Stream<G, D2>
    where
        D2: Data,
        B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
        L: FnMut(&mut FrontieredInputHandle<'_, G::Timestamp, D1, P::Puller>, &mut OutputHandle<'_, G::Timestamp, D2, Tee<G::Timestamp, D2>>) + 'static,
        P: ParallelizationContract<G::Timestamp, D1>
;
fn unary_notify<D2: Data, L: FnMut(&mut InputHandle<G::Timestamp, D1, P::Puller>, &mut OutputHandle<'_, G::Timestamp, D2, Tee<G::Timestamp, D2>>, &mut Notificator<'_, G::Timestamp>) + 'static, P: ParallelizationContract<G::Timestamp, D1>>(
        &self,
        pact: P,
        name: &str,
        init: impl IntoIterator<Item = G::Timestamp>,
        logic: L
    ) -> Stream<G, D2>;
fn unary<D2, B, L, P>(
        &self,
        pact: P,
        name: &str,
        constructor: B
    ) -> Stream<G, D2>
    where
        D2: Data,
        B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
        L: FnMut(&mut InputHandle<G::Timestamp, D1, P::Puller>, &mut OutputHandle<'_, G::Timestamp, D2, Tee<G::Timestamp, D2>>) + 'static,
        P: ParallelizationContract<G::Timestamp, D1>
;
fn binary_frontier<D2, D3, B, L, P1, P2>(
        &self,
        other: &Stream<G, D2>,
        pact1: P1,
        pact2: P2,
        name: &str,
        constructor: B
    ) -> Stream<G, D3>
    where
        D2: Data,
        D3: Data,
        B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
        L: FnMut(&mut FrontieredInputHandle<'_, G::Timestamp, D1, P1::Puller>, &mut FrontieredInputHandle<'_, G::Timestamp, D2, P2::Puller>, &mut OutputHandle<'_, G::Timestamp, D3, Tee<G::Timestamp, D3>>) + 'static,
        P1: ParallelizationContract<G::Timestamp, D1>,
        P2: ParallelizationContract<G::Timestamp, D2>
;
fn binary_notify<D2: Data, D3: Data, L: FnMut(&mut InputHandle<G::Timestamp, D1, P1::Puller>, &mut InputHandle<G::Timestamp, D2, P2::Puller>, &mut OutputHandle<'_, G::Timestamp, D3, Tee<G::Timestamp, D3>>, &mut Notificator<'_, G::Timestamp>) + 'static, P1: ParallelizationContract<G::Timestamp, D1>, P2: ParallelizationContract<G::Timestamp, D2>>(
        &self,
        other: &Stream<G, D2>,
        pact1: P1,
        pact2: P2,
        name: &str,
        init: impl IntoIterator<Item = G::Timestamp>,
        logic: L
    ) -> Stream<G, D3>;
fn binary<D2, D3, B, L, P1, P2>(
        &self,
        other: &Stream<G, D2>,
        pact1: P1,
        pact2: P2,
        name: &str,
        constructor: B
    ) -> Stream<G, D3>
    where
        D2: Data,
        D3: Data,
        B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
        L: FnMut(&mut InputHandle<G::Timestamp, D1, P1::Puller>, &mut InputHandle<G::Timestamp, D2, P2::Puller>, &mut OutputHandle<'_, G::Timestamp, D3, Tee<G::Timestamp, D3>>) + 'static,
        P1: ParallelizationContract<G::Timestamp, D1>,
        P2: ParallelizationContract<G::Timestamp, D2>
;
fn sink<L, P>(&self, pact: P, name: &str, logic: L)
    where
        L: FnMut(&mut FrontieredInputHandle<'_, G::Timestamp, D1, P::Puller>) + 'static,
        P: ParallelizationContract<G::Timestamp, D1>
; }

Methods to construct generic streaming and blocking operators.

Required methods

fn unary_frontier<D2, B, L, P>(
    &self,
    pact: P,
    name: &str,
    constructor: B
) -> Stream<G, D2> where
    D2: Data,
    B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
    L: FnMut(&mut FrontieredInputHandle<'_, G::Timestamp, D1, P::Puller>, &mut OutputHandle<'_, G::Timestamp, D2, Tee<G::Timestamp, D2>>) + 'static,
    P: ParallelizationContract<G::Timestamp, D1>, 
[src]

Creates a new dataflow operator that partitions its input stream by a parallelization strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor. logic can read from the input stream, write to the output stream, and inspect the frontier at the input.

Examples

use std::collections::HashMap;
use timely::dataflow::operators::{ToStream, FrontierNotificator};
use timely::dataflow::operators::generic::Operator;
use timely::dataflow::channels::pact::Pipeline;

fn main() {
    timely::example(|scope| {
        (0u64..10).to_stream(scope)
            .unary_frontier(Pipeline, "example", |default_cap, _info| {
                let mut cap = Some(default_cap.delayed(&12));
                let mut notificator = FrontierNotificator::new();
                let mut stash = HashMap::new();
                let mut vector = Vec::new();
                move |input, output| {
                    if let Some(ref c) = cap.take() {
                        output.session(&c).give(12);
                    }
                    while let Some((time, data)) = input.next() {
                        data.swap(&mut vector);
                        stash.entry(time.time().clone())
                             .or_insert(Vec::new())
                             .extend(vector.drain(..));
                    }
                    notificator.for_each(&[input.frontier()], |time, _not| {
                        if let Some(mut vec) = stash.remove(time.time()) {
                            output.session(&time).give_iterator(vec.drain(..));
                        }
                    });
                }
            });
    });
}

fn unary_notify<D2: Data, L: FnMut(&mut InputHandle<G::Timestamp, D1, P::Puller>, &mut OutputHandle<'_, G::Timestamp, D2, Tee<G::Timestamp, D2>>, &mut Notificator<'_, G::Timestamp>) + 'static, P: ParallelizationContract<G::Timestamp, D1>>(
    &self,
    pact: P,
    name: &str,
    init: impl IntoIterator<Item = G::Timestamp>,
    logic: L
) -> Stream<G, D2>
[src]

Creates a new dataflow operator that partitions its input stream by a parallelization strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor. logic can read from the input stream, write to the output stream, and inspect the frontier at the input.

Examples

use std::collections::HashMap;
use timely::dataflow::operators::{ToStream, FrontierNotificator};
use timely::dataflow::operators::generic::Operator;
use timely::dataflow::channels::pact::Pipeline;

fn main() {
    timely::example(|scope| {
        let mut vector = Vec::new();
        (0u64..10)
            .to_stream(scope)
            .unary_notify(Pipeline, "example", None, move |input, output, notificator| {
                input.for_each(|time, data| {
                    data.swap(&mut vector);
                    output.session(&time).give_vec(&mut vector);
                    notificator.notify_at(time.retain());
                });
                notificator.for_each(|time, _cnt, _not| {
                    println!("notified at {:?}", time);
                });
            });
    });
}

fn unary<D2, B, L, P>(
    &self,
    pact: P,
    name: &str,
    constructor: B
) -> Stream<G, D2> where
    D2: Data,
    B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
    L: FnMut(&mut InputHandle<G::Timestamp, D1, P::Puller>, &mut OutputHandle<'_, G::Timestamp, D2, Tee<G::Timestamp, D2>>) + 'static,
    P: ParallelizationContract<G::Timestamp, D1>, 
[src]

Creates a new dataflow operator that partitions its input stream by a parallelization strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor. logic can read from the input stream, and write to the output stream.

Examples

use timely::dataflow::operators::{ToStream, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::Scope;

timely::example(|scope| {
    (0u64..10).to_stream(scope)
        .unary(Pipeline, "example", |default_cap, _info| {
            let mut cap = Some(default_cap.delayed(&12));
            let mut vector = Vec::new();
            move |input, output| {
                if let Some(ref c) = cap.take() {
                    output.session(&c).give(100);
                }
                while let Some((time, data)) = input.next() {
                    data.swap(&mut vector);
                    output.session(&time).give_vec(&mut vector);
                }
            }
        });
});

fn binary_frontier<D2, D3, B, L, P1, P2>(
    &self,
    other: &Stream<G, D2>,
    pact1: P1,
    pact2: P2,
    name: &str,
    constructor: B
) -> Stream<G, D3> where
    D2: Data,
    D3: Data,
    B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
    L: FnMut(&mut FrontieredInputHandle<'_, G::Timestamp, D1, P1::Puller>, &mut FrontieredInputHandle<'_, G::Timestamp, D2, P2::Puller>, &mut OutputHandle<'_, G::Timestamp, D3, Tee<G::Timestamp, D3>>) + 'static,
    P1: ParallelizationContract<G::Timestamp, D1>,
    P2: ParallelizationContract<G::Timestamp, D2>, 
[src]

Creates a new dataflow operator that partitions its input streams by a parallelization strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor. logic can read from the input streams, write to the output stream, and inspect the frontier at the inputs.

Examples

use std::collections::HashMap;
use timely::dataflow::operators::{Input, Inspect, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;

timely::execute(timely::Config::thread(), |worker| {
   let (mut in1, mut in2) = worker.dataflow::<usize,_,_>(|scope| {
       let (in1_handle, in1) = scope.new_input();
       let (in2_handle, in2) = scope.new_input();
       in1.binary_frontier(&in2, Pipeline, Pipeline, "example", |mut _default_cap, _info| {
           let mut notificator = FrontierNotificator::new();
           let mut stash = HashMap::new();
           let mut vector1 = Vec::new();
           let mut vector2 = Vec::new();
           move |input1, input2, output| {
               while let Some((time, data)) = input1.next() {
                   data.swap(&mut vector1);
                   stash.entry(time.time().clone()).or_insert(Vec::new()).extend(vector1.drain(..));
                   notificator.notify_at(time.retain());
               }
               while let Some((time, data)) = input2.next() {
                   data.swap(&mut vector2);
                   stash.entry(time.time().clone()).or_insert(Vec::new()).extend(vector2.drain(..));
                   notificator.notify_at(time.retain());
               }
               notificator.for_each(&[input1.frontier(), input2.frontier()], |time, _not| {
                   if let Some(mut vec) = stash.remove(time.time()) {
                       output.session(&time).give_iterator(vec.drain(..));
                   }
               });
           }
       }).inspect_batch(|t, x| println!("{:?} -> {:?}", t, x));

       (in1_handle, in2_handle)
   });

   for i in 1..10 {
       in1.send(i - 1);
       in1.advance_to(i);
       in2.send(i - 1);
       in2.advance_to(i);
   }
}).unwrap();

fn binary_notify<D2: Data, D3: Data, L: FnMut(&mut InputHandle<G::Timestamp, D1, P1::Puller>, &mut InputHandle<G::Timestamp, D2, P2::Puller>, &mut OutputHandle<'_, G::Timestamp, D3, Tee<G::Timestamp, D3>>, &mut Notificator<'_, G::Timestamp>) + 'static, P1: ParallelizationContract<G::Timestamp, D1>, P2: ParallelizationContract<G::Timestamp, D2>>(
    &self,
    other: &Stream<G, D2>,
    pact1: P1,
    pact2: P2,
    name: &str,
    init: impl IntoIterator<Item = G::Timestamp>,
    logic: L
) -> Stream<G, D3>
[src]

Creates a new dataflow operator that partitions its input streams by a parallelization strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor. logic can read from the input streams, write to the output stream, and inspect the frontier at the inputs.

Examples

use std::collections::HashMap;
use timely::dataflow::operators::{Input, Inspect, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;

timely::execute(timely::Config::thread(), |worker| {
   let (mut in1, mut in2) = worker.dataflow::<usize,_,_>(|scope| {
       let (in1_handle, in1) = scope.new_input();
       let (in2_handle, in2) = scope.new_input();

       let mut vector1 = Vec::new();
       let mut vector2 = Vec::new();
       in1.binary_notify(&in2, Pipeline, Pipeline, "example", None, move |input1, input2, output, notificator| {
           input1.for_each(|time, data| {
               data.swap(&mut vector1);
               output.session(&time).give_vec(&mut vector1);
               notificator.notify_at(time.retain());
           });
           input2.for_each(|time, data| {
               data.swap(&mut vector2);
               output.session(&time).give_vec(&mut vector2);
               notificator.notify_at(time.retain());
           });
           notificator.for_each(|time, _cnt, _not| {
               println!("notified at {:?}", time);
           });
       });

       (in1_handle, in2_handle)
   });

   for i in 1..10 {
       in1.send(i - 1);
       in1.advance_to(i);
       in2.send(i - 1);
       in2.advance_to(i);
   }
}).unwrap();

fn binary<D2, D3, B, L, P1, P2>(
    &self,
    other: &Stream<G, D2>,
    pact1: P1,
    pact2: P2,
    name: &str,
    constructor: B
) -> Stream<G, D3> where
    D2: Data,
    D3: Data,
    B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
    L: FnMut(&mut InputHandle<G::Timestamp, D1, P1::Puller>, &mut InputHandle<G::Timestamp, D2, P2::Puller>, &mut OutputHandle<'_, G::Timestamp, D3, Tee<G::Timestamp, D3>>) + 'static,
    P1: ParallelizationContract<G::Timestamp, D1>,
    P2: ParallelizationContract<G::Timestamp, D2>, 
[src]

Creates a new dataflow operator that partitions its input streams by a parallelization strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor. logic can read from the input streams, write to the output stream, and inspect the frontier at the inputs.

Examples

use timely::dataflow::operators::{ToStream, Inspect, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::Scope;

timely::example(|scope| {
    let stream2 = (0u64..10).to_stream(scope);
    (0u64..10).to_stream(scope)
        .binary(&stream2, Pipeline, Pipeline, "example", |default_cap, _info| {
            let mut cap = Some(default_cap.delayed(&12));
            let mut vector1 = Vec::new();
            let mut vector2 = Vec::new();
            move |input1, input2, output| {
                if let Some(ref c) = cap.take() {
                    output.session(&c).give(100);
                }
                while let Some((time, data)) = input1.next() {
                    data.swap(&mut vector1);
                    output.session(&time).give_vec(&mut vector1);
                }
                while let Some((time, data)) = input2.next() {
                    data.swap(&mut vector2);
                    output.session(&time).give_vec(&mut vector2);
                }
            }
        }).inspect(|x| println!("{:?}", x));
});

fn sink<L, P>(&self, pact: P, name: &str, logic: L) where
    L: FnMut(&mut FrontieredInputHandle<'_, G::Timestamp, D1, P::Puller>) + 'static,
    P: ParallelizationContract<G::Timestamp, D1>, 
[src]

Creates a new dataflow operator that partitions its input stream by a parallelization strategy pact, and repeatedly invokes the function logic which can read from the input stream and inspect the frontier at the input.

Examples

use timely::dataflow::operators::{ToStream, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::Scope;

timely::example(|scope| {
    (0u64..10)
        .to_stream(scope)
        .sink(Pipeline, "example", |input| {
            while let Some((time, data)) = input.next() {
                for datum in data.iter() {
                    println!("{:?}:\t{:?}", time, datum);
                }
            }
        });
});
Loading content...

Implementors

impl<G: Scope, D1: Data> Operator<G, D1> for Stream<G, D1>[src]

Loading content...