1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
//! Tracks minimal sets of mutually incomparable elements of a partial order.

use crate::progress::ChangeBatch;
use crate::order::PartialOrder;

/// A set of mutually incomparable elements.
///
/// An antichain is a set of partially ordered elements, each of which is incomparable to the others.
/// This antichain implementation allows you to repeatedly introduce elements to the antichain, and
/// which will evict larger elements to maintain the *minimal* antichain, those incomparable elements
/// no greater than any other element.
///
/// Two antichains are equal if the contain the same set of elements, even if in different orders.
/// This can make equality testing quadratic, though linear in the common case that the sequences
/// are identical.
#[derive(Clone, Debug, Default, Abomonation, Serialize, Deserialize)]
pub struct Antichain<T> {
    elements: Vec<T>
}

impl<T: PartialOrder> Antichain<T> {
    /// Updates the `Antichain` if the element is not greater than or equal to some present element.
    ///
    /// Returns true if element is added to the set
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::Antichain;
    ///
    /// let mut frontier = Antichain::new();
    /// assert!(frontier.insert(2));
    /// assert!(!frontier.insert(3));
    ///```
    pub fn insert(&mut self, element: T) -> bool {
        if !self.elements.iter().any(|x| x.less_equal(&element)) {
            self.elements.retain(|x| !element.less_equal(x));
            self.elements.push(element);
            true
        }
        else {
            false
        }
    }

    /// Performs a sequence of insertion and return true iff any insertion does.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::Antichain;
    ///
    /// let mut frontier = Antichain::new();
    /// assert!(frontier.extend(Some(3)));
    /// assert!(frontier.extend(vec![2, 5]));
    /// assert!(!frontier.extend(vec![3, 4]));
    ///```
    pub fn extend<I: IntoIterator<Item=T>>(&mut self, iterator: I) -> bool {
        let mut added = false;
        for element in iterator {
            added = self.insert(element) || added;
        }
        added
    }

    /// Returns true if any item in the antichain is strictly less than the argument.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::Antichain;
    ///
    /// let mut frontier = Antichain::from_elem(2);
    /// assert!(frontier.less_than(&3));
    /// assert!(!frontier.less_than(&2));
    /// assert!(!frontier.less_than(&1));
    ///
    /// frontier.clear();
    /// assert!(!frontier.less_than(&3));
    ///```
    #[inline]
    pub fn less_than(&self, time: &T) -> bool {
        self.elements.iter().any(|x| x.less_than(time))
    }

    /// Returns true if any item in the antichain is less than or equal to the argument.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::Antichain;
    ///
    /// let mut frontier = Antichain::from_elem(2);
    /// assert!(frontier.less_equal(&3));
    /// assert!(frontier.less_equal(&2));
    /// assert!(!frontier.less_equal(&1));
    ///
    /// frontier.clear();
    /// assert!(!frontier.less_equal(&3));
    ///```
    #[inline]
    pub fn less_equal(&self, time: &T) -> bool {
        self.elements.iter().any(|x| x.less_equal(time))
    }

    /// Returns true if every element of `other` is greater or equal to some element of `self`.
    #[deprecated(since="0.12.0", note="please use `PartialOrder::less_equal` instead")]
    #[inline]
    pub fn dominates(&self, other: &Antichain<T>) -> bool {
        <Self as PartialOrder>::less_equal(self, other)
    }
}

impl<T> Antichain<T> {

    /// Creates a new empty `Antichain`.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::Antichain;
    ///
    /// let mut frontier = Antichain::<u32>::new();
    ///```
    pub fn new() -> Antichain<T> { Antichain { elements: Vec::new() } }

    /// Creates a new singleton `Antichain`.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::Antichain;
    ///
    /// let mut frontier = Antichain::from_elem(2);
    ///```
    pub fn from_elem(element: T) -> Antichain<T> { Antichain { elements: vec![element] } }

    /// Clears the contents of the antichain.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::Antichain;
    ///
    /// let mut frontier = Antichain::from_elem(2);
    /// frontier.clear();
    /// assert!(frontier.elements().is_empty());
    ///```
    pub fn clear(&mut self) { self.elements.clear() }

    /// Sorts the elements so that comparisons between antichains can be made.
    pub fn sort(&mut self) where T: Ord { self.elements.sort() }

    /// Reveals the elements in the antichain.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::Antichain;
    ///
    /// let mut frontier = Antichain::from_elem(2);
    /// assert_eq!(frontier.elements(), &[2]);
    ///```
    #[inline] pub fn elements(&self) -> &[T] { &self.elements[..] }

    /// Reveals the elements in the antichain.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::Antichain;
    ///
    /// let mut frontier = Antichain::from_elem(2);
    /// assert_eq!(&*frontier.borrow(), &[2]);
    ///```
    #[inline] pub fn borrow(&self) -> AntichainRef<T> { AntichainRef::new(&self.elements[..]) }}

impl<T: PartialEq> PartialEq for Antichain<T> {
    fn eq(&self, other: &Self) -> bool {
        // Lengths should be the same, with the option for fast acceptance if identical.
        self.elements().len() == other.elements().len() &&
        (
            self.elements().iter().zip(other.elements().iter()).all(|(t1,t2)| t1 == t2) ||
            self.elements().iter().all(|t1| other.elements().iter().any(|t2| t1.eq(t2)))
        )
    }
}

impl<T: Eq> Eq for Antichain<T> { }

impl<T: PartialOrder> PartialOrder for Antichain<T> {
    fn less_equal(&self, other: &Self) -> bool {
        other.elements().iter().all(|t2| self.elements().iter().any(|t1| t1.less_equal(t2)))
    }
}

impl<T: PartialOrder> From<Vec<T>> for Antichain<T> {
    fn from(vec: Vec<T>) -> Self {
        // TODO: We could reuse `vec` with some care.
        let mut temp = Antichain::new();
        for elem in vec.into_iter() { temp.insert(elem); }
        temp
    }
}

/// An antichain based on a multiset whose elements frequencies can be updated.
///
/// The `MutableAntichain` maintains frequencies for many elements of type `T`, and exposes the set
/// of elements with positive count not greater than any other elements with positive count. The
/// antichain may both advance and retreat; the changes do not all need to be to elements greater or
/// equal to some elements of the frontier.
///
/// The type `T` must implement `PartialOrder` as well as `Ord`. The implementation of the `Ord` trait
/// is used to efficiently organize the updates for cancellation, and to efficiently determine the lower
/// bounds, and only needs to not contradict the `PartialOrder` implementation (that is, if `PartialOrder`
/// orders two elements, then so does the `Ord` implementation).
///
/// The `MutableAntichain` implementation is done with the intent that updates to it are done in batches,
/// and it is acceptable to rebuild the frontier from scratch when a batch of updates change it. This means
/// that it can be expensive to maintain a large number of counts and change few elements near the frontier.
///
/// There is an `update_dirty` method for single updates that leave the `MutableAntichain` in a dirty state,
/// but I strongly recommend against using them unless you must (on part of timely progress tracking seems
/// to be greatly simplified by access to this)
#[derive(Clone, Debug, Abomonation, Serialize, Deserialize)]
pub struct MutableAntichain<T: PartialOrder+Ord> {
    dirty: usize,
    updates: Vec<(T, i64)>,
    frontier: Vec<T>,
    changes: ChangeBatch<T>,
}

impl<T: PartialOrder+Ord+Clone> MutableAntichain<T> {
    /// Creates a new empty `MutableAntichain`.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let frontier = MutableAntichain::<usize>::new();
    /// assert!(frontier.is_empty());
    ///```
    #[inline]
    pub fn new() -> MutableAntichain<T> {
        MutableAntichain {
            dirty: 0,
            updates: Vec::new(),
            frontier:  Vec::new(),
            changes: ChangeBatch::new(),
        }
    }

    /// Removes all elements.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::<usize>::new();
    /// frontier.clear();
    /// assert!(frontier.is_empty());
    ///```
    #[inline]
    pub fn clear(&mut self) {
        self.dirty = 0;
        self.updates.clear();
        self.frontier.clear();
        self.changes.clear();
    }

    /// This method deletes the contents. Unlike `clear` it records doing so.
    pub fn empty(&mut self) {
        for index in 0 .. self.updates.len() { self.updates[index].1 = 0; }
        self.dirty = self.updates.len();
    }

    /// Reveals the minimal elements with positive count.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::<usize>::new();
    /// assert!(frontier.frontier().len() == 0);
    ///```
    #[inline]
    pub fn frontier(&self) -> AntichainRef<T> {
        debug_assert_eq!(self.dirty, 0);
        AntichainRef::new(&self.frontier)
    }

    /// Creates a new singleton `MutableAntichain`.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::{AntichainRef, MutableAntichain};
    ///
    /// let mut frontier = MutableAntichain::new_bottom(0u64);
    /// assert!(frontier.frontier() == AntichainRef::new(&[0u64]));
    ///```
    #[inline]
    pub fn new_bottom(bottom: T) -> MutableAntichain<T> {
        MutableAntichain {
            dirty: 0,
            updates: vec![(bottom.clone(), 1)],
            frontier: vec![bottom],
            changes: ChangeBatch::new(),
        }
    }

    /// Returns true if there are no elements in the `MutableAntichain`.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::<usize>::new();
    /// assert!(frontier.is_empty());
    ///```
    #[inline]
    pub fn is_empty(&self) -> bool {
        debug_assert_eq!(self.dirty, 0);
        self.frontier.is_empty()
    }

    /// Returns true if any item in the `MutableAntichain` is strictly less than the argument.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::new_bottom(1u64);
    /// assert!(!frontier.less_than(&0));
    /// assert!(!frontier.less_than(&1));
    /// assert!(frontier.less_than(&2));
    ///```
    #[inline]
    pub fn less_than(&self, time: &T) -> bool {
        debug_assert_eq!(self.dirty, 0);
        self.frontier().less_than(time)
    }

    /// Returns true if any item in the `MutableAntichain` is less than or equal to the argument.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::MutableAntichain;
    ///
    /// let mut frontier = MutableAntichain::new_bottom(1u64);
    /// assert!(!frontier.less_equal(&0));
    /// assert!(frontier.less_equal(&1));
    /// assert!(frontier.less_equal(&2));
    ///```
    #[inline]
    pub fn less_equal(&self, time: &T) -> bool {
        debug_assert_eq!(self.dirty, 0);
        self.frontier().less_equal(time)
    }

    /// Allows a single-element push, but dirties the antichain and prevents inspection until cleaned.
    ///
    /// At the moment inspection is prevented via panic, so best be careful (this should probably be fixed).
    /// It is *very* important if you want to use this method that very soon afterwards you call something
    /// akin to `update_iter`, perhaps with a `None` argument if you have no more data, as this method will
    /// tidy up the internal representation.
    #[inline]
    pub fn update_dirty(&mut self, time: T, delta: i64) {
        self.updates.push((time, delta));
        self.dirty += 1;
    }

    /// Applies updates to the antichain and enumerates any changes.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::{AntichainRef, MutableAntichain};
    ///
    /// let mut frontier = MutableAntichain::new_bottom(1u64);
    /// let changes =
    /// frontier
    ///     .update_iter(vec![(1, -1), (2, 7)])
    ///     .collect::<Vec<_>>();
    ///
    /// assert!(frontier.frontier() == AntichainRef::new(&[2]));
    /// assert!(changes == vec![(1, -1), (2, 1)]);
    ///```
    #[inline]
    pub fn update_iter<'a, I>(&'a mut self, updates: I) -> ::std::vec::Drain<'a, (T, i64)>
    where
        I: IntoIterator<Item = (T, i64)>,
    {
        for (time, delta) in updates {
            self.updates.push((time, delta));
            self.dirty += 1;
        }

        // track whether a rebuild is needed.
        let mut rebuild_required = false;

        // determine if recently pushed data requires rebuilding the frontier.
        // note: this may be required even with an empty iterator, due to dirty data in self.updates.
        while self.dirty > 0 && !rebuild_required {

            let time = &self.updates[self.updates.len() - self.dirty].0;
            let delta = self.updates[self.updates.len() - self.dirty].1;

            let beyond_frontier = self.frontier.iter().any(|f| f.less_than(time));
            let before_frontier = !self.frontier.iter().any(|f| f.less_equal(time));
            rebuild_required = rebuild_required || !(beyond_frontier || (delta < 0 && before_frontier));

            self.dirty -= 1;
        }
        self.dirty = 0;

        if rebuild_required {
            self.rebuild()
        }
        self.changes.drain()
    }

    /// Sorts and consolidates `self.updates` and applies `action` to any frontier changes.
    ///
    /// This method is meant to be used for bulk updates to the frontier, and does more work than one might do
    /// for single updates, but is meant to be an efficient way to process multiple updates together. This is
    /// especially true when we want to apply very large numbers of updates.
    fn rebuild(&mut self) {

        // sort and consolidate updates; retain non-zero accumulations.
        if !self.updates.is_empty() {
            self.updates.sort_by(|x,y| x.0.cmp(&y.0));
            for i in 0 .. self.updates.len() - 1 {
                if self.updates[i].0 == self.updates[i+1].0 {
                    self.updates[i+1].1 += self.updates[i].1;
                    self.updates[i].1 = 0;
                }
            }
            self.updates.retain(|x| x.1 != 0);
        }

        for time in self.frontier.drain(..) {
            self.changes.update(time, -1);
        }

        // build new frontier using strictly positive times.
        // as the times are sorted, we don't need to worry that we might displace frontier elements.
        for time in self.updates.iter().filter(|x| x.1 > 0) {
            if !self.frontier.iter().any(|f| f.less_equal(&time.0)) {
                self.frontier.push(time.0.clone());
            }
        }

        for time in self.frontier.iter() {
            self.changes.update(time.clone(), 1);
        }
    }

    /// Reports the count for a queried time.
    pub fn count_for(&self, query_time: &T) -> i64 {
        self.updates
            .iter()
            .filter(|td| td.0.eq(query_time))
            .map(|td| td.1)
            .sum()
    }
}

/// Extension trait for filtering time changes through antichains.
pub trait MutableAntichainFilter<T: PartialOrder+Ord+Clone> {
    /// Filters time changes through an antichain.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::{MutableAntichain, MutableAntichainFilter};
    ///
    /// let mut frontier = MutableAntichain::new_bottom(1u64);
    /// let changes =
    /// vec![(1, -1), (2, 7)]
    ///     .filter_through(&mut frontier)
    ///     .collect::<Vec<_>>();
    ///
    /// assert!(changes == vec![(1, -1), (2, 1)]);
    ///```
    fn filter_through(self, antichain: &mut MutableAntichain<T>) -> ::std::vec::Drain<(T,i64)>;
}

impl<T: PartialOrder+Ord+Clone, I: IntoIterator<Item=(T,i64)>> MutableAntichainFilter<T> for I {
    fn filter_through(self, antichain: &mut MutableAntichain<T>) -> ::std::vec::Drain<(T,i64)> {
        antichain.update_iter(self.into_iter())
    }
}

/// A wrapper for elements of an antichain.
#[derive(Debug)]
pub struct AntichainRef<'a, T: 'a> {
    /// Elements contained in the antichain.
    frontier: &'a [T],
}

impl<'a, T: 'a> Clone for AntichainRef<'a, T> {
    fn clone(&self) -> Self {
        Self {
            frontier: self.frontier.clone(),
        }
    }
}
impl<'a, T: 'a> Copy for AntichainRef<'a, T> { }

impl<'a, T: 'a> AntichainRef<'a, T> {
    /// Create a new `AntichainRef` from a reference to a slice of elements forming the frontier.
    ///
    /// This method does not check that this antichain has any particular properties, for example
    /// that there are no elements strictly less than other elements.
    pub fn new(frontier: &'a [T]) -> Self {
        Self {
            frontier,
        }
    }

    /// Constructs an owned antichain from the antichain reference.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::{Antichain, frontier::AntichainRef};
    ///
    /// let frontier = AntichainRef::new(&[1u64]);
    /// assert_eq!(frontier.to_owned(), Antichain::from_elem(1u64));
    ///```
    pub fn to_owned(&self) -> Antichain<T> where T: Clone {
        Antichain {
            elements: self.frontier.to_vec()
        }
    }
}

impl<'a, T: 'a+PartialOrder> AntichainRef<'a, T> {

    /// Returns true if any item in the `AntichainRef` is strictly less than the argument.
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::AntichainRef;
    ///
    /// let frontier = AntichainRef::new(&[1u64]);
    /// assert!(!frontier.less_than(&0));
    /// assert!(!frontier.less_than(&1));
    /// assert!(frontier.less_than(&2));
    ///```
    #[inline]
    pub fn less_than(&self, time: &T) -> bool {
        self.iter().any(|x| x.less_than(time))
    }

    /// Returns true if any item in the `AntichainRef` is less than or equal to the argument.
    #[inline]
    ///
    /// # Examples
    ///
    ///```
    /// use timely::progress::frontier::AntichainRef;
    ///
    /// let frontier = AntichainRef::new(&[1u64]);
    /// assert!(!frontier.less_equal(&0));
    /// assert!(frontier.less_equal(&1));
    /// assert!(frontier.less_equal(&2));
    ///```
    pub fn less_equal(&self, time: &T) -> bool {
        self.iter().any(|x| x.less_equal(time))
    }
}

impl<'a, T: PartialEq> PartialEq for AntichainRef<'a, T> {
    fn eq(&self, other: &Self) -> bool {
        // Lengths should be the same, with the option for fast acceptance if identical.
        self.len() == other.len() &&
        (
            self.iter().zip(other.iter()).all(|(t1,t2)| t1 == t2) ||
            self.iter().all(|t1| other.iter().any(|t2| t1.eq(t2)))
        )
    }
}

impl<'a, T: Eq> Eq for AntichainRef<'a, T> { }

impl<'a, T: PartialOrder> PartialOrder for AntichainRef<'a, T> {
    fn less_equal(&self, other: &Self) -> bool {
        other.iter().all(|t2| self.iter().any(|t1| t1.less_equal(t2)))
    }
}

impl<'a, T> ::std::ops::Deref for AntichainRef<'a, T> {
    type Target = [T];
    fn deref(&self) -> &Self::Target {
        self.frontier
    }
}

impl<'a, T: 'a> ::std::iter::IntoIterator for &'a AntichainRef<'a, T> {
    type Item = &'a T;
    type IntoIter = ::std::slice::Iter<'a, T>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}