1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//! # tiktoken_rust
//!
//! This crate is a tokeniser for use with OpenAI's models.
mod core;
pub use crate::core::{encoding_for_model, get_encoding, Encoding, Result};
mod model;
pub use model::{AllowedSpecial, DecodeMode, DisallowedSpecial, EncodeError};
mod load;
mod openai_public;
pub use openai_public::list_encoding_names;
use std::collections::HashSet;
use std::thread;
use fancy_regex::Regex;
use rustc_hash::FxHashMap as HashMap;
fn _byte_pair_merge<T>(
piece: &[u8],
ranks: &HashMap<Vec<u8>, usize>,
f: impl Fn(std::ops::Range<usize>) -> T,
) -> Vec<T> {
// This is a vector of (start, rank).
// The rank is of the byte pair starting at position start.
// The rank of the last item in the vector is not a valid value.
let mut parts: Vec<(usize, usize)> = (0..piece.len() + 1).map(|i| (i, usize::MAX)).collect();
let get_rank = {
#[inline(always)]
|parts: &Vec<(usize, usize)>, start_idx: usize, skip: usize| {
if (start_idx + skip + 2) < parts.len() {
ranks
.get(&piece[parts[start_idx].0..parts[start_idx + skip + 2].0])
.copied()
} else {
None
}
}
};
// We look up the ranks once in the beginning and iteratively update
// them during each merge, which reduces the number of rank lookups.
for i in 0..parts.len() - 2 {
match get_rank(&parts, i, 0) {
Some(rank) => {
// usize::MAX is a sentinel value and cannot be a valid rank
debug_assert!(rank != usize::MAX);
parts[i].1 = rank;
}
None => {
continue;
}
};
}
// If you have n parts and m merges, this does O(mn) work.
// We could do something with a heap and do O(m log n) work.
// It is important to consider that n is often small (<100), and as such
// the cache-locality benefits outweigh the algorithmic complexity downsides
// of the `parts` vector data structure above.
// Note that we hash bytes, not token pairs. As long as we train BPE the way we
// currently do, this is equivalent. An easy way to break this would be to decouple
// merge priority from token index or to prevent specific token merges.
loop {
if parts.len() == 1 {
break;
}
// usize::MAX is a sentinel rank value allowing us to
// take the min more quickly
let mut min_rank: (usize, usize) = (usize::MAX, 0);
for (i, &(_, rank)) in parts[..parts.len() - 1].iter().enumerate() {
if rank < min_rank.0 {
min_rank = (rank, i);
}
}
if min_rank.0 != usize::MAX {
let i = min_rank.1;
// NOTE: We are about to remove parts[i + 1]. We do not do it
// yet because there are cache-locality benefits to updating
// parts[i] and parts[i-1] before removing, which could thrash
// the cache. Thus, we update the rank calculation by skipping over
// parts[i + 1], by invoking `get_rank!` with `skip = 1`.
parts[i].1 = get_rank(&parts, i, 1).unwrap_or(usize::MAX);
if i > 0 {
parts[i - 1].1 = get_rank(&parts, i - 1, 1).unwrap_or(usize::MAX);
}
parts.remove(i + 1);
} else {
break;
}
}
let mut out: Vec<T> = Vec::with_capacity(parts.len() - 1);
for i in 0..parts.len() - 1 {
out.push(f(parts[i].0..parts[i + 1].0));
}
out
}
fn byte_pair_encode(piece: &[u8], ranks: &HashMap<Vec<u8>, usize>) -> Vec<usize> {
if piece.len() == 1 {
return vec![ranks[piece]];
}
_byte_pair_merge(piece, ranks, |p| ranks[&piece[p.start..p.end]])
}
#[allow(dead_code)]
fn byte_pair_split<'a>(piece: &'a [u8], ranks: &HashMap<Vec<u8>, usize>) -> Vec<&'a [u8]> {
if piece.len() == 1 {
return vec![piece];
}
_byte_pair_merge(piece, ranks, |p| &piece[p.start..p.end])
}
// Various performance notes:
//
// Regex
// =====
// Most of the time is spent in regex. The easiest way to speed this up is by using less fancy
// regex features. For instance, using a regex parse-able by `regex` crate is 3x faster than
// the usual regex we use.
//
// However, given that we're using a regex parse-able by `regex`, there isn't much difference
// between using the `regex` crate and using the `fancy_regex` crate.
//
// There is an important interaction between threading, `regex` and `fancy_regex`.
// When using `fancy_regex`, we hit `regex.find_at`. It turns out that this causes contention on
// some mutable scratch space inside of `regex`. This absolutely kills performance. When using plain
// old `regex`, we don't hit this, because `find_iter` has a different code path.
// Related: https://github.com/rust-lang/regex/blob/master/PERFORMANCE.md
// Anyway, the way we get around this is with having a (mostly) thread local clone of the regex for
// each thread.
//
// Threading
// =========
// I tried using `rayon`. It wasn't really faster than using Python threads and releasing the GIL.
// So goodbye `rayon`! Let thread count etc be in control of our Python users.
//
// Caching
// =======
// The reference tokeniser has an lru cache over the equivalent of `byte_pair_encode`.
// Originally, we had one too! Without it, we were only vaguely faster than Python.
// I used an RWLock to protect the cache. This didn't seem to hurt single threaded performance
// noticeably, but it did affect multi-threaded performance. Weirdly, it seemed to affect
// multi-threaded performance even when I only had readers (maybed I messed something up?).
// Anyway, I realised that we could get rid of the cache, if we treat the set of tokens as a cache!
// These are exactly the set or merges that are likely to be hot. And now we don't have to think
// about interior mutability, memory use, or cloning.
//
// Hashing
// =======
// We use FxHashMap instead of the standard HashMap. This is maybe like a 5-10% win?
// The current implementation ends up doing a lot of hashing of bytes. In theory, this could be made
// to be hashing of two-tuples of ints, which looks like it may also be a couple percent faster.
use std::num::NonZeroU64;
struct FakeThreadId(NonZeroU64);
fn hash_current_thread() -> usize {
// It's easier to use unsafe than to use nightly. Rust has this nice u64 thread id counter
// that works great for our use case of avoiding collisions in our array. Unfortunately,
// it's private. However, there are only so many ways you can layout a u64, so just transmute
// https://github.com/rust-lang/rust/issues/67939
const _: [u8; 8] = [0; std::mem::size_of::<std::thread::ThreadId>()];
const _: [u8; 8] = [0; std::mem::size_of::<FakeThreadId>()];
let x = unsafe {
std::mem::transmute::<std::thread::ThreadId, FakeThreadId>(thread::current().id()).0
};
u64::from(x) as usize
}
const MAX_NUM_THREADS: usize = 128;
struct CoreBPE {
encoder: HashMap<Vec<u8>, usize>,
special_tokens_encoder: HashMap<String, usize>,
decoder: HashMap<usize, Vec<u8>>,
special_tokens_decoder: HashMap<usize, Vec<u8>>,
regex_tls: Vec<Regex>,
special_regex_tls: Vec<Regex>,
sorted_token_bytes: Vec<Vec<u8>>,
}
impl CoreBPE {
fn _get_tl_regex(&self) -> &Regex {
// See performance notes above for what this is about
// It's also a little janky, please make a better version of it!
// However, it's nice that this doesn't leak memory to short-lived threads
&self.regex_tls[hash_current_thread() % MAX_NUM_THREADS]
}
fn _get_tl_special_regex(&self) -> &Regex {
&self.special_regex_tls[hash_current_thread() % MAX_NUM_THREADS]
}
fn _decode_native(&self, tokens: &[usize]) -> Vec<u8> {
let mut ret = Vec::with_capacity(tokens.len() * 2);
for token in tokens {
let token_bytes = self
.decoder
.get(token)
.unwrap_or_else(|| &self.special_tokens_decoder[token]);
ret.extend(token_bytes);
}
ret
}
fn _encode_ordinary_native(&self, text: &str) -> Vec<usize> {
// This is the core of the encoding logic; the other functions in here
// just make things complicated :-)
let regex = self._get_tl_regex();
let mut ret = vec![];
for mat in regex.find_iter(text) {
let piece = mat.unwrap().as_str().as_bytes();
if let Some(token) = self.encoder.get(piece) {
ret.push(*token);
continue;
}
ret.extend(&byte_pair_encode(piece, &self.encoder));
}
ret
}
fn _encode_native(&self, text: &str, allowed_special: &HashSet<&str>) -> (Vec<usize>, usize) {
let special_regex = self._get_tl_special_regex();
let regex = self._get_tl_regex();
let mut ret = vec![];
let mut start = 0;
let mut last_piece_token_len = 0;
loop {
let mut next_special;
let mut start_find = start;
loop {
// Find the next allowed special token, if any
next_special = special_regex.find_from_pos(text, start_find).unwrap();
match next_special {
Some(m) => {
if allowed_special.contains(&text[m.start()..m.end()]) {
break;
}
start_find = m.start() + 1;
}
None => break,
}
}
let end = next_special.map_or(text.len(), |m| m.start());
// Okay, here we go, compare this logic to _encode_ordinary_native
for mat in regex.find_iter(&text[start..end]) {
let piece = mat.unwrap().as_str().as_bytes();
if let Some(token) = self.encoder.get(piece) {
last_piece_token_len = 1;
ret.push(*token);
continue;
}
let tokens = byte_pair_encode(piece, &self.encoder);
last_piece_token_len = tokens.len();
ret.extend(&tokens);
}
match next_special {
// And here we push the special token
Some(m) => {
let piece = m.as_str();
let token = self.special_tokens_encoder[piece];
ret.push(token);
start = m.end();
last_piece_token_len = 0;
}
None => break,
}
}
// last_piece_token_len is how many tokens came from the last regex split. This is used
// for determining unstable tokens, since you can't merge across (stable) regex splits
(ret, last_piece_token_len)
}
fn _increase_last_piece_token_len(
&self,
tokens: Vec<usize>,
mut last_piece_token_len: usize,
) -> (Vec<usize>, usize) {
// Unfortunately, the locations where our regex splits can be unstable.
// For the purposes of determining unstable tokens, unstable regex splitting
// is only a problem if a split that was present disappears, since this can
// lead to merging of tokens otherwise thought to be stable.
// cl100k_base makes our life hard by including the \s*[\r\n]+
// pattern. This can e.g. cause "\n" + " " to become "\n \n".
// Here is a quick and dirty fix:
{
let token_is_all_space = |token| {
self.decoder
.get(token)
.map(|token_bytes| {
token_bytes
.iter()
.rev()
.all(|&b| [b' ', b'\n', b'\t'].contains(&b))
})
.unwrap_or(false)
};
if last_piece_token_len > 0
&& token_is_all_space(&tokens[tokens.len() - last_piece_token_len])
{
while (last_piece_token_len < tokens.len())
&& token_is_all_space(&tokens[tokens.len() - last_piece_token_len - 1])
{
last_piece_token_len += 1;
}
}
}
debug_assert!(last_piece_token_len <= tokens.len());
(tokens, last_piece_token_len)
}
fn _encode_unstable_native(
&self,
text: &str,
allowed_special: &HashSet<&str>,
) -> (Vec<usize>, HashSet<Vec<usize>>) {
let (tokens, last_piece_token_len) = self._encode_native(text, allowed_special);
if last_piece_token_len == 0 {
// If last_piece_token_len is zero, the last token was a special token and we have
// no unstable bytes
return (tokens, HashSet::new());
}
let (mut tokens, last_piece_token_len) =
self._increase_last_piece_token_len(tokens, last_piece_token_len);
let unstable_bytes = self._decode_native(&tokens[tokens.len() - last_piece_token_len..]);
tokens.truncate(tokens.len() - last_piece_token_len);
// TODO: we should try harder to find additional stable tokens
// This would reduce the amount of retokenising when determining completions
// Refer to the logic in an older version of this file
let mut completions = HashSet::new();
if unstable_bytes.is_empty() {
return (tokens, completions);
}
// This is the easy bit. Just find all single tokens that start with unstable_bytes
// (including tokens that exactly match unstable_bytes)
// Separating this from the loop below helps with performance in a common case.
let mut point = self
.sorted_token_bytes
.partition_point(|x| x.as_slice() < unstable_bytes.as_slice());
while point < self.sorted_token_bytes.len()
&& self.sorted_token_bytes[point].starts_with(&unstable_bytes)
{
completions.insert(vec![
self.encoder[self.sorted_token_bytes[point].as_slice()],
]);
point += 1;
}
// Now apply even more brute force. At every (other) possible position for the straddling
// token, concatenate additional bytes from that token (if any) to unstable_bytes,
// and retokenise the whole thing and see what we get.
for i in 1..unstable_bytes.len() {
let prefix = &unstable_bytes[..i];
let suffix = &unstable_bytes[i..];
let mut point = self
.sorted_token_bytes
.partition_point(|x| x.as_slice() < suffix);
// TODO: Perf optimisation if suffix starts with " "?
while point < self.sorted_token_bytes.len()
&& self.sorted_token_bytes[point].starts_with(suffix)
{
let possibility = [prefix, self.sorted_token_bytes[point].as_slice()].concat();
let encoded = match std::str::from_utf8(&possibility) {
// Morally, this is byte_pair_encode(&possibility, &self.encoder)
// But we might have introduced a regex split which would prevent merges.
// (particularly possible in the presence of unstable regex splits)
// So convert to UTF-8 and do regex splitting.
// E.g. with cl100k_base " !" gets split to " " + " !",
// but byte_pair_encode(" !") != byte_pair_encode(" ")
Ok(s) => self._encode_ordinary_native(s),
// Technically, whether or not this arm is correct depends on whether there
// would be a regex split before the UTF-8 truncation point.
// Probably niche enough that no one will ever notice (after all, people didn't
// notice all the big holes in the previous unstable token implementation)
Err(_) => byte_pair_encode(&possibility, &self.encoder),
// Something like the following is intriguing but incorrect:
// Err(e) => self._encode_ordinary_native(unsafe {
// std::str::from_utf8_unchecked(&possibility[..e.valid_up_to()])
// }),
};
let mut seq = Vec::new();
let mut seq_len = 0;
for token in encoded {
seq.push(token);
seq_len += self.decoder[&token].len();
if seq_len >= unstable_bytes.len() {
break;
}
}
completions.insert(seq);
point += 1;
}
}
// This is also not straightforward. While we generally assume that regex splits are stable,
// unfortunately, they are not. That is, if adding bytes were to make a split appear in
// unstable_bytes, this could make tokens possible which our logic would otherwise think
// would be merged.
// For example, with gpt2, the use of \s+(?!\S) means that "\n\n" could
// develop a split, e.g. "\n\n0" splits into "\n"+"\n"+"0", making "\n" a possible token.
// Here is a quick and dirty fix:
// This isn't right if we ever remove \s+(?!\S)
if unstable_bytes.len() > 1 {
let last_decoded = bstr::decode_last_utf8(unstable_bytes.as_slice());
if unstable_bytes.len() - last_decoded.1 > 0
&& last_decoded.0.map_or(false, |c| c.is_whitespace())
{
let mut reencoded = byte_pair_encode(
&unstable_bytes[..unstable_bytes.len() - last_decoded.1],
&self.encoder,
);
reencoded.extend(byte_pair_encode(
&unstable_bytes[unstable_bytes.len() - last_decoded.1..],
&self.encoder,
));
completions.insert(reencoded);
}
}
(tokens, completions)
}
}
impl CoreBPE {
fn new(
encoder: HashMap<Vec<u8>, usize>,
special_tokens_encoder: HashMap<String, usize>,
pattern: &str,
) -> Result<Self> {
let regex = Regex::new(pattern)?;
let special_regex = {
let _parts = special_tokens_encoder
.keys()
.map(|s| fancy_regex::escape(s))
.collect::<Vec<_>>();
Regex::new(&_parts.join("|"))?
};
let decoder: HashMap<usize, Vec<u8>> =
encoder.iter().map(|(k, v)| (*v, k.clone())).collect();
assert_eq!(encoder.len(),
decoder.len(),
"Encoder and decoder must be of equal length; maybe you had duplicate token indices in your encoder?");
let special_tokens_decoder: HashMap<usize, Vec<u8>> = special_tokens_encoder
.iter()
.map(|(k, v)| (*v, k.as_bytes().to_vec()))
.collect();
// Clone because I don't know how to tell Rust I'm not going to change the map
let mut sorted_token_bytes: Vec<Vec<u8>> = encoder.keys().cloned().collect();
sorted_token_bytes.sort();
Ok(CoreBPE {
encoder,
special_tokens_encoder,
decoder,
special_tokens_decoder,
regex_tls: (0..MAX_NUM_THREADS).map(|_| regex.clone()).collect(),
special_regex_tls: (0..MAX_NUM_THREADS)
.map(|_| special_regex.clone())
.collect(),
sorted_token_bytes,
})
}
}
#[cfg(test)]
mod tests {
use rustc_hash::FxHashMap as HashMap;
use crate::byte_pair_split;
#[test]
fn very_simple_test() {
let mut ranks = HashMap::default();
ranks.insert(b"ab".to_vec(), 1);
ranks.insert(b"cd".to_vec(), 2);
let res = byte_pair_split(b"abcd", &ranks);
assert_eq!(res, vec![b"ab", b"cd"]);
}
}