1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

use crate::math::*;
use crate::definition::*;
use crate::core::*;
use crate::camera::*;
use crate::object::mesh::*;

///
/// A shader program used for rendering one or more instances of a [InstancedMesh](InstancedMesh). It has a fixed vertex shader and
/// customizable fragment shader for custom lighting. Use this in combination with [render](InstancedMesh::render).
///
pub struct InstancedMeshProgram {
    mesh_program: MeshProgram,
}

impl InstancedMeshProgram {
    ///
    /// Constructs a new shader program for rendering instanced meshes. The fragment shader can use the fragments position by adding `in vec3 pos;`,
    /// its normal by `in vec3 nor;`, its uv coordinates by `in vec2 uvs;` and its per vertex color by `in vec4 col;` to the shader source code.
    ///
    pub fn new(context: &Context, fragment_shader_source: &str) -> Result<Self, Error> {
        Ok(Self {mesh_program: MeshProgram::new_internal(context, fragment_shader_source, true)?})
    }
}

impl std::ops::Deref for InstancedMeshProgram {
    type Target = Program;

    fn deref(&self) -> &Program {
        &self.mesh_program
    }
}

///
/// Similar to [Mesh](crate::Mesh), except it is possible to render many instances of the same triangle mesh efficiently.
///
pub struct InstancedMesh {
    context: Context,
    position_buffer: VertexBuffer,
    normal_buffer: Option<VertexBuffer>,
    index_buffer: Option<ElementBuffer>,
    uv_buffer: Option<VertexBuffer>,
    instance_count: u32,
    instance_buffer1: VertexBuffer,
    instance_buffer2: VertexBuffer,
    instance_buffer3: VertexBuffer,
}

impl InstancedMesh
{
    ///
    /// Constructs a new InstancedMesh from the given [CPUMesh](crate::CPUMesh). The mesh is rendered
    /// in as many instances as there are transformation matrices in the transformations parameter.
    /// Each instance is transformed with the given transformation before it is rendered.
    /// The transformations can be updated by the [update_transformations](Self::update_transformations) function.
    ///
    pub fn new(context: &Context, transformations: &[Mat4], cpu_mesh: &CPUMesh) -> Result<Self, Error>
    {
        let position_buffer = VertexBuffer::new_with_static_f32(context, &cpu_mesh.positions)?;
        let normal_buffer = if let Some(ref normals) = cpu_mesh.normals { Some(VertexBuffer::new_with_static_f32(context, normals)?) } else {None};
        let index_buffer = if let Some(ref ind) = cpu_mesh.indices { Some(ElementBuffer::new_with_u32(context, ind)?) } else {None};
        let uv_buffer = if let Some(ref uvs) = cpu_mesh.uvs { Some(VertexBuffer::new_with_static_f32(context, uvs)?) } else {None};

        let mut mesh = Self { context: context.clone(), instance_count: 0,
            position_buffer, normal_buffer, index_buffer, uv_buffer,
            instance_buffer1: VertexBuffer::new_with_dynamic_f32(context, &[])?,
            instance_buffer2: VertexBuffer::new_with_dynamic_f32(context, &[])?,
            instance_buffer3: VertexBuffer::new_with_dynamic_f32(context, &[])?
        };
        mesh.update_transformations(transformations);
        unsafe {
            MESH_COUNT += 1;
        }
        Ok(mesh)
    }

    ///
    /// Render only the depth of the instanced mesh into the current depth render target which is useful for shadow maps or depth pre-pass.
    /// Must be called in a render target render function,
    /// for example in the callback function of [Screen::write](crate::Screen::write).
    /// The transformation can be used to position, orientate and scale the instanced mesh.
    ///
    pub fn render_depth(&self, render_states: RenderStates, viewport: Viewport, transformation: &Mat4, camera: &Camera) -> Result<(), Error>
    {
        let program = unsafe {
            if PROGRAM_DEPTH.is_none()
            {
                PROGRAM_DEPTH = Some(InstancedMeshProgram::new(&self.context, "void main() {}")?);
            }
            PROGRAM_DEPTH.as_ref().unwrap()
        };
        self.render(program, render_states, viewport, transformation, camera)
    }

    ///
    /// Render the instanced mesh with a color per triangle vertex. The colors are defined when constructing the instanced mesh.
    /// Must be called in a render target render function,
    /// for example in the callback function of [Screen::write](crate::Screen::write).
    /// The transformation can be used to position, orientate and scale the instanced mesh.
    ///
    /// # Errors
    /// Will return an error if the instanced mesh has no colors.
    ///
    pub fn render_color(&self, render_states: RenderStates, viewport: Viewport, transformation: &Mat4, camera: &camera::Camera) -> Result<(), Error>
    {
        let program = unsafe {
            if PROGRAM_PER_VERTEX_COLOR.is_none()
            {
                PROGRAM_PER_VERTEX_COLOR = Some(InstancedMeshProgram::new(&self.context,include_str!("shaders/mesh_vertex_color.frag"))?);
            }
            PROGRAM_PER_VERTEX_COLOR.as_ref().unwrap()
        };
        self.render(program, render_states, viewport, transformation, camera)
    }

    ///
    /// Render the instanced mesh with the given color.
    /// Must be called in a render target render function,
    /// for example in the callback function of [Screen::write](crate::Screen::write).
    /// The transformation can be used to position, orientate and scale the instanced mesh.
    ///
    pub fn render_with_color(&self, color: &Vec4, render_states: RenderStates, viewport: Viewport, transformation: &Mat4, camera: &camera::Camera) -> Result<(), Error>
    {
        let program = unsafe {
            if PROGRAM_COLOR.is_none()
            {
                PROGRAM_COLOR = Some(InstancedMeshProgram::new(&self.context, include_str!("shaders/mesh_color.frag"))?);
            }
            PROGRAM_COLOR.as_ref().unwrap()
        };
        program.use_uniform_vec4("color", color)?;
        self.render(program, render_states, viewport, transformation, camera)
    }

    ///
    /// Render the instanced mesh with the given texture.
    /// Must be called in a render target render function,
    /// for example in the callback function of [Screen::write](crate::Screen::write).
    /// The transformation can be used to position, orientate and scale the instanced mesh.
    ///
    /// # Errors
    /// Will return an error if the instanced mesh has no uv coordinates.
    ///
    pub fn render_with_texture(&self, texture: &dyn Texture, render_states: RenderStates, viewport: Viewport, transformation: &Mat4, camera: &camera::Camera) -> Result<(), Error>
    {
        let program = unsafe {
            if PROGRAM_TEXTURE.is_none()
            {
                PROGRAM_TEXTURE = Some(InstancedMeshProgram::new(&self.context, include_str!("shaders/mesh_texture.frag"))?);
            }
            PROGRAM_TEXTURE.as_ref().unwrap()
        };
        program.use_texture(texture,"tex")?;
        self.render(program, render_states, viewport, transformation, camera)
    }

    ///
    /// Render the instanced mesh with the given [InstancedMeshProgram](InstancedMeshProgram).
    /// Must be called in a render target render function,
    /// for example in the callback function of [Screen::write](crate::Screen::write).
    /// The transformation can be used to position, orientate and scale the instanced mesh.
    ///
    /// # Errors
    /// Will return an error if the instanced mesh shader program requires a certain attribute and the instanced mesh does not have that attribute.
    /// For example if the program needs the normal to calculate lighting, but the mesh does not have per vertex normals, this
    /// function will return an error.
    ///
    pub fn render(&self, program: &InstancedMeshProgram, render_states: RenderStates, viewport: Viewport, transformation: &Mat4, camera: &camera::Camera) -> Result<(), Error>
    {
        program.use_attribute_vec4_divisor(&self.instance_buffer1, "row1", 1)?;
        program.use_attribute_vec4_divisor(&self.instance_buffer2, "row2", 1)?;
        program.use_attribute_vec4_divisor(&self.instance_buffer3, "row3", 1)?;

        program.use_uniform_mat4("modelMatrix", &transformation)?;
        program.use_uniform_block(camera.matrix_buffer(), "Camera");

        program.use_attribute_vec3(&self.position_buffer, "position")?;
        if program.mesh_program.use_uvs {
            let uv_buffer = self.uv_buffer.as_ref().ok_or(
                Error::FailedToCreateMesh {message: "The mesh shader program needs uv coordinates, but the mesh does not have any.".to_string()})?;
            program.use_attribute_vec2(uv_buffer, "uv_coordinates")?;
        }
        if program.mesh_program.use_normals {
            let normal_buffer = self.normal_buffer.as_ref().ok_or(
                Error::FailedToCreateMesh {message: "The mesh shader program needs normals, but the mesh does not have any. Consider calculating the normals on the CPUMesh.".to_string()})?;
            program.use_uniform_mat4("normalMatrix", &transformation.invert().unwrap().transpose())?;
            program.use_attribute_vec3(normal_buffer, "normal")?;
        }

        if let Some(ref index_buffer) = self.index_buffer {
            program.draw_elements_instanced(render_states, viewport,index_buffer, self.instance_count);
        } else {
            program.draw_arrays_instanced(render_states, viewport,self.position_buffer.count() as u32/3, self.instance_count);
        }
        Ok(())
    }

    ///
    /// Updates the transformations applied to each mesh instance before they are rendered.
    /// The mesh is rendered in as many instances as there are transformation matrices.
    ///
    pub fn update_transformations(&mut self, transformations: &[Mat4])
    {
        self.instance_count = transformations.len() as u32;
        let mut row1 = Vec::new();
        let mut row2 = Vec::new();
        let mut row3 = Vec::new();
        for transform in transformations {
            row1.push(transform.x.x);
            row1.push(transform.y.x);
            row1.push(transform.z.x);
            row1.push(transform.w.x);

            row2.push(transform.x.y);
            row2.push(transform.y.y);
            row2.push(transform.z.y);
            row2.push(transform.w.y);

            row3.push(transform.x.z);
            row3.push(transform.y.z);
            row3.push(transform.z.z);
            row3.push(transform.w.z);
        }
        self.instance_buffer1.fill_with_dynamic_f32(&row1);
        self.instance_buffer2.fill_with_dynamic_f32(&row2);
        self.instance_buffer3.fill_with_dynamic_f32(&row3);
    }
}

impl Drop for InstancedMesh {

    fn drop(&mut self) {
        unsafe {
            MESH_COUNT -= 1;
            if MESH_COUNT == 0 {
                PROGRAM_DEPTH = None;
                PROGRAM_COLOR = None;
                PROGRAM_TEXTURE = None;
                PROGRAM_PER_VERTEX_COLOR = None;
            }
        }
    }
}

static mut PROGRAM_COLOR: Option<InstancedMeshProgram> = None;
static mut PROGRAM_TEXTURE: Option<InstancedMeshProgram> = None;
static mut PROGRAM_DEPTH: Option<InstancedMeshProgram> = None;
static mut PROGRAM_PER_VERTEX_COLOR: Option<InstancedMeshProgram> = None;
static mut MESH_COUNT: u32 = 0;