1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
//!
//! A collection of common materials implementing the [Material] trait.
//! A material together with a [geometry] can be rendered directly, or combined into an [object] (see [Gm]) that can be used in a render call, for example [render_pass].
//!

use crate::core::*;
use crate::renderer::*;

pub use three_d_asset::material::{
    GeometryFunction, LightingModel, NormalDistributionFunction, PbrMaterial as CpuMaterial,
};

mod color_material;
#[doc(inline)]
pub use color_material::*;

mod depth_material;
#[doc(inline)]
pub use depth_material::*;

mod normal_material;
#[doc(inline)]
pub use normal_material::*;

mod orm_material;
#[doc(inline)]
pub use orm_material::*;

mod position_material;
#[doc(inline)]
pub use position_material::*;

mod uv_material;
#[doc(inline)]
pub use uv_material::*;

mod physical_material;
#[doc(inline)]
pub use physical_material::*;

mod deferred_physical_material;
#[doc(inline)]
pub use deferred_physical_material::*;

mod skybox_material;
#[doc(inline)]
pub(in crate::renderer) use skybox_material::*;

mod isosurface_material;
#[doc(inline)]
pub use isosurface_material::*;

///
/// Represents a material that, together with a [geometry], can be rendered using [Geometry::render_with_material].
/// Alternatively, a geometry and a material can be combined in a [Gm],
/// thereby creating an [Object] which can be used in a render call, for example [render_pass].
///
/// The material can use an attribute by adding the folowing to the fragment shader source code.
/// - position (in world space): `in vec3 pos;`
/// - normal: `in vec3 nor;`,
/// - tangent: `in vec3 tang;`
/// - bitangent: `in vec3 bitang;`
/// - uv coordinates: `in vec2 uvs;`
/// - color: `in vec4 col;`
/// The rendering will fail if the material requires one of these attributes and the [geometry] does not provide it.
///
pub trait Material {
    /// Returns the fragment shader source for this material. Should output the final fragment color.
    fn fragment_shader_source(&self, use_vertex_colors: bool, lights: &[&dyn Light]) -> String;
    /// Sends the uniform data needed for this material to the fragment shader.
    fn use_uniforms(
        &self,
        program: &Program,
        camera: &Camera,
        lights: &[&dyn Light],
    ) -> ThreeDResult<()>;
    /// Returns the render states needed to render with this material.
    fn render_states(&self) -> RenderStates;
    /// Returns whether or not this material is transparent.
    fn is_transparent(&self) -> bool;
}

///
/// Implement this for a [Material] that can be created from a [CpuMaterial].
///
pub trait FromCpuMaterial: std::marker::Sized {
    ///
    /// Creates a new material that can be used for rendering from a [CpuMaterial].
    ///
    fn from_cpu_material(context: &Context, cpu_material: &CpuMaterial) -> ThreeDResult<Self>;
}

///
/// Implement this for a [Material] that can be created from a [CpuVoxelGrid].
///
pub trait FromCpuVoxelGrid: std::marker::Sized {
    ///
    /// Creates a new material that can be used for rendering from a [CpuVoxelGrid].
    ///
    fn from_cpu_voxel_grid(context: &Context, cpu_voxel_grid: &CpuVoxelGrid) -> ThreeDResult<Self>;
}

impl<T: Material + ?Sized> Material for &T {
    fn fragment_shader_source(&self, use_vertex_colors: bool, lights: &[&dyn Light]) -> String {
        (*self).fragment_shader_source(use_vertex_colors, lights)
    }
    fn use_uniforms(
        &self,
        program: &Program,
        camera: &Camera,
        lights: &[&dyn Light],
    ) -> ThreeDResult<()> {
        (*self).use_uniforms(program, camera, lights)
    }
    fn render_states(&self) -> RenderStates {
        (*self).render_states()
    }
    fn is_transparent(&self) -> bool {
        (*self).is_transparent()
    }
}

impl<T: Material + ?Sized> Material for &mut T {
    fn fragment_shader_source(&self, use_vertex_colors: bool, lights: &[&dyn Light]) -> String {
        (**self).fragment_shader_source(use_vertex_colors, lights)
    }
    fn use_uniforms(
        &self,
        program: &Program,
        camera: &Camera,
        lights: &[&dyn Light],
    ) -> ThreeDResult<()> {
        (**self).use_uniforms(program, camera, lights)
    }
    fn render_states(&self) -> RenderStates {
        (**self).render_states()
    }
    fn is_transparent(&self) -> bool {
        (**self).is_transparent()
    }
}

impl<T: Material> Material for Box<T> {
    fn fragment_shader_source(&self, use_vertex_colors: bool, lights: &[&dyn Light]) -> String {
        self.as_ref()
            .fragment_shader_source(use_vertex_colors, lights)
    }
    fn use_uniforms(
        &self,
        program: &Program,
        camera: &Camera,
        lights: &[&dyn Light],
    ) -> ThreeDResult<()> {
        self.as_ref().use_uniforms(program, camera, lights)
    }
    fn render_states(&self) -> RenderStates {
        self.as_ref().render_states()
    }
    fn is_transparent(&self) -> bool {
        self.as_ref().is_transparent()
    }
}

impl<T: Material> Material for std::rc::Rc<T> {
    fn fragment_shader_source(&self, use_vertex_colors: bool, lights: &[&dyn Light]) -> String {
        self.as_ref()
            .fragment_shader_source(use_vertex_colors, lights)
    }
    fn use_uniforms(
        &self,
        program: &Program,
        camera: &Camera,
        lights: &[&dyn Light],
    ) -> ThreeDResult<()> {
        self.as_ref().use_uniforms(program, camera, lights)
    }
    fn render_states(&self) -> RenderStates {
        self.as_ref().render_states()
    }
    fn is_transparent(&self) -> bool {
        self.as_ref().is_transparent()
    }
}

impl<T: Material> Material for std::rc::Rc<std::cell::RefCell<T>> {
    fn fragment_shader_source(&self, use_vertex_colors: bool, lights: &[&dyn Light]) -> String {
        self.borrow()
            .fragment_shader_source(use_vertex_colors, lights)
    }
    fn use_uniforms(
        &self,
        program: &Program,
        camera: &Camera,
        lights: &[&dyn Light],
    ) -> ThreeDResult<()> {
        self.borrow().use_uniforms(program, camera, lights)
    }
    fn render_states(&self) -> RenderStates {
        self.borrow().render_states()
    }
    fn is_transparent(&self) -> bool {
        self.borrow().is_transparent()
    }
}

fn is_transparent(cpu_material: &CpuMaterial) -> bool {
    cpu_material.albedo.a != 255
        || cpu_material
            .albedo_texture
            .as_ref()
            .map(|t| match &t.data {
                TextureData::RgbaU8(data) => data.iter().any(|d| d[3] != 255),
                TextureData::RgbaF16(data) => data.iter().any(|d| d[3] < f16::from_f32(0.99)),
                TextureData::RgbaF32(data) => data.iter().any(|d| d[3] < 0.99),
                _ => false,
            })
            .unwrap_or(false)
}