1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

// Stack jobs and job execution implementation based on rayon-core by Niko Matsakis and Josh Stone
//
use crossbeam_channel::{Sender, bounded};
use std::sync::Arc;

#[cfg(feature="unstable-thread-sea")]
use crossbeam_channel::Receiver;
#[cfg(feature="unstable-thread-sea")]
use std::sync::atomic::AtomicUsize;
#[cfg(feature="unstable-thread-sea")]
use std::sync::atomic::Ordering;

use std::mem;
use std::thread;

mod unwind;
mod job;

use crate::job::{JobRef, StackJob};

#[cfg(feature="unstable-thread-sea")]
type Message = JobRef;
#[cfg(feature="unstable-thread-sea")]
type GroupMessage = Receiver<Message>;

/// A macro thread pool that acts as a reservoir (a *Sea*) of threads,
/// from which you can checkout/reserve a thread pool of *n* threads.
///
/// Checking out threads from the thread pool has the advantage that contention between threads is
/// reduced when assigning work. The downside is that it is not always possible to reserve a
/// thread pool of the right size, if it is already in use.
#[cfg(feature="unstable-thread-sea")]
#[derive(Debug)]
pub struct ThreadSea {
    sender: Sender<GroupMessage>,
    receiver: Receiver<GroupMessage>,
    thread_count: AtomicUsize,
    threads_available: Arc<AtomicUsize>,
    //grow_lock: Mutex<()>,
    thread_id: AtomicUsize,
}

#[cfg(feature="unstable-thread-sea")]
#[derive(Debug)]
struct SeaLocalInfo {
    receiver: Receiver<GroupMessage>,
    threads_available: Arc<AtomicUsize>,
    thread_id: usize,
}


#[cfg(feature="unstable-thread-sea")]
impl ThreadSea {
    pub fn new(thread_count: usize) -> Self {
        let (sender, receiver) = bounded(thread_count); // unsure which kind of channel to use here
        let nthreads = thread_count;
        let thread_count = AtomicUsize::new(nthreads);
        let threads_available = Arc::new(AtomicUsize::new(nthreads));
        //let grow_lock = Mutex::default();
        let thread_id = AtomicUsize::new(0);
        let pool = ThreadSea { sender, receiver, threads_available, thread_count, thread_id };
        for _ in 0..nthreads {
            pool.add_thread();
        }
        pool
    }

    pub fn thread_count(&self) -> usize { self.thread_count.load(Ordering::Acquire) }

    pub fn reserve(&self, thread_count: usize) -> ThreadPool {
        /*
        let _guard = self.grow_lock.lock();
        let cur_threads = self.thread_count.load(Ordering::Acquire);
        let cur_available = self.threads_available.load(Ordering::Acquire);
        let used_available_threads;
        if false && thread_count > cur_available {
            let gap = thread_count - cur_available;
            //dbg!("Adding threads", gap);
            for _ in 0..gap {
                self.add_thread();
            }
            self.thread_count.fetch_add(gap, Ordering::Release);
            used_available_threads = cur_available;
        } else {
            used_available_threads = thread_count;
        }
        //self.threads_available.fetch_sub(used_available_threads, Ordering::Release);
        drop(_guard);
        */

        let (sender, receiver) = bounded(0); // rendezvous channel
        let mut nthreads = 0;
        for _ in 0..thread_count {
            // maybe try_send and only reserve the number of threads that is available?
            //self.sender.send(receiver.clone()).unwrap();
            let ret = self.sender.try_send(receiver.clone());
            if ret.is_ok() { nthreads += 1; }
        }
        //eprintln!("Reserved {} threads", nthreads);
        //assert!(nthreads != 0, "Failed to reserve any threads");
        ThreadPool {
            sender,
            thread_count: nthreads,
        }
    }

    fn local_info(&self) -> SeaLocalInfo {
        let receiver = self.receiver.clone();
        let threads_available = self.threads_available.clone();
        let thread_id = self.thread_id.fetch_add(1, Ordering::Relaxed);
        SeaLocalInfo { receiver, threads_available, thread_id }
    }


    fn add_thread(&self) {
        let local = self.local_info();
        std::thread::spawn(move || {
            let my_local = local;
            for channel in my_local.receiver {
                // We got reserved for a thread pool
                //eprintln!("Thread start {}", my_local.thread_id);
                for job in channel {
                    unsafe {
                        job.execute()
                    }
                }
                // sender dropped, so we leave the group
                //eprintln!("Thread idle {}", my_local.thread_id);
                //my_local.threads_available.fetch_sub(1, Ordering::Release);
            }
        });
    }

}

// ThreadTree message on the channel (is just a job ref)
type TTreeMessage = JobRef;

/// A hierarchical thread pool used for splitting work in an branching fashion.
///
/// See [`ThreadTree::new_with_level()`] to create a new thread tree,
/// and see [`ThreadTree::top()`] for a usage example.
///
/// The thread tree has the benefit that at each level, jobs can be sent directly to the thread
/// that is going to execute it - that means there is no contention between waiting threads. The
/// downside is that the structure of the thread tree is rather static.
#[derive(Debug)]
pub struct ThreadTree {
    sender: Option<Sender<TTreeMessage>>,
    child: Option<[Arc<ThreadTree>; 2]>,
}

//
// Only three threads needed to have four leaves, see below.
//
// leaves 1a, 1b, 2c, 2d but with threads spawned for nodes 1b, 2 and 2d.
// Nodes root, 1, 1a, 2c all run in their parent/current thread.
//
//      (root)
//   (1)      2 
// (a)  b  (c)  d
// 
// 2: Fork with no children and 1 sender to d
// 1: Fork with no children and 1 sender to b
// root: Fork with children 1 and 2; sender to 2
//
// Idea for later: implement reservations of (parts of) the tree?
// So that a 2-2 tree can be used as two separate 1-2 trees simultaneously

impl ThreadTree {
    const BOTTOM: &'static Self = &ThreadTree::const_stub();

    #[inline]
    pub fn stub() -> Self {
        Self::const_stub()
    }

    #[inline]
    pub(crate) const fn const_stub() -> Self {
        ThreadTree { sender: None, child: None }
    }

    /// Return true if this is a non-dummy pool which will parallelize in join
    #[inline]
    pub fn is_parallel(&self) -> bool {
        self.sender.is_some()
    }

    /// Return a 1-level thread tree (two leaves)
    pub fn new_level_1() -> Arc<Self>
    {
        Arc::new(ThreadTree { sender: Some(Self::add_thread()), child: None })
    }

    /// Build an n-level thread tree with 2**n leaves
    ///
    /// Level must be <= 12; panics on invalid input
    pub fn new_with_level(level: usize) -> Arc<Self> {
        assert!(level <= 12,
                "Input exceeds maximum level 12 (equivalent to 2**12 - 1 threads), got level='{}'",
                level);
        if level == 0 {
            Arc::new(Self::stub())
        } else if level == 1 {
            Self::new_level_1()
        } else {
            let fork_2 = Self::new_with_level(level - 1);
            let fork_3 = Self::new_with_level(level - 1);
            Arc::new(ThreadTree { sender: Some(Self::add_thread()), child: Some([fork_2, fork_3])})
        }
    }

    /// Get the top thread tree context, where we can inject tasks with join.
    /// Each job gets a sub-context that can be used to inject tasks further down the corresponding
    /// branch of the tree.
    ///
    /// **Note** to avoid deadlocks, tasks should never be injected into a tree context that
    /// doesn't belong to the current level. To avoid this should be easy - only call .top() at the
    /// top level.
    ///
    /// The following example shows using a two-level tree and using context to spawn tasks.
    ///
    /// ```
    /// use thread_tree::{ThreadTree, ThreadTreeCtx};
    ///
    /// let tp = ThreadTree::new_with_level(2);
    ///
    /// fn f(index: i32, ctx: ThreadTreeCtx<'_>) -> i32 {
    ///     // do work in subtasks here
    ///     let (a, b) = ctx.join(move |_| index + 1, |_| index + 2);
    ///
    ///     return a + b;
    /// }
    ///
    /// let (r0, r1) = tp.top().join(|ctx| f(0, ctx), |ctx| f(1, ctx));
    ///
    /// assert_eq!(r0 + r1, (0 + 1) + (0 + 2) + (1 + 1) + (1 + 2));
    /// ```
    pub fn top(&self) -> ThreadTreeCtx<'_> {
        ThreadTreeCtx::from(self)
    }

    // Create a new thread that executes jobs, and return the channel sender that feeds jobs to
    // this thread.
    //
    // Notice that jobs are executed with a panic guard, that makes the whole program abort if a
    // job panics. Jobs should not panic.
    fn add_thread() -> Sender<TTreeMessage> {
        let (sender, receiver) = bounded::<TTreeMessage>(1); // buffered, we know we have a connection
        std::thread::spawn(move || {
            let abort_guard = unwind::AbortIfPanic;
            for job in receiver {
                unsafe {
                    job.execute()
                }
            }
            mem::forget(abort_guard);
        });
        sender
    }
}

/// A level-specific handle to the thread tree, that can be used to inject jobs.
///
/// See [`ThreadTree::top()`] for more information.
#[derive(Debug, Copy, Clone)]
pub struct ThreadTreeCtx<'a> {
    fork: &'a ThreadTree,
    _not_send_sync: *const (),
}

impl ThreadTreeCtx<'_> {
    pub(crate) fn get(&self) -> &ThreadTree { self.fork }

    pub(crate) fn from(fork: &ThreadTree) -> ThreadTreeCtx<'_> {
        ThreadTreeCtx { fork, _not_send_sync: &() }
    }

    /// Return true if this level will parallelize in join (or if we are at the bottom of the tree)
    #[inline]
    pub fn is_parallel(&self) -> bool {
        self.get().is_parallel()
    }

    /// Run a and b simultaneously (and return their results, if applicable).
    ///
    /// A runs on the current thread while b runs on the sibling thread; each is passed
    /// a lower level of the thread tree (if applicable, or a stub if the bottom is reached).
    /// 
    /// Warning: functions that execute on worker threads here must not panic (it will abort on
    /// panic). Out of a and b, at most one will execute on a worker thread from here, and
    /// at least one (or both) will execute on the current thread.
    ///
    /// Warning: You must not .join() into the same tree from nested jobs. Nested jobs must
    /// be spawned using the context that each job receives as the first parameter.
    pub fn join<A, B, RA, RB>(&self, a: A, b: B) -> (RA, RB)
        where A: FnOnce(ThreadTreeCtx) -> RA + Send,
              B: FnOnce(ThreadTreeCtx) -> RB + Send,
              RA: Send,
              RB: Send,
    {
        let bottom_level = ThreadTree::BOTTOM;
        let self_ = self.get();
        let (fork_a, fork_b) = match &self_.child {
            None => (bottom_level, bottom_level),
            Some([fa, fb]) => (&**fa, &**fb),
        };
        //assert!(self_.sender.is_some());

        unsafe {
            let a = move || a(ThreadTreeCtx::from(fork_a));
            let b = move || b(ThreadTreeCtx::from(fork_b));

            // first send B to the sibling thread
            let b_job = StackJob::new(b); // plant this safely on the stack
            let b_job_ref = JobRef::new(&b_job);
            let b_runs_here = match self_.sender {
                Some(ref s) => { s.send(b_job_ref).unwrap(); None }
                None => Some(b_job_ref),
            };

            let a_result;
            {
                // Ensure that we will later wait for B, if it is running on
                // another thread. Both in the case of A panic or regular scope exit.
                //
                // If job A panics, we still cannot return until we are sure that job
                // B is complete. This is because it may contain references into the
                // enclosing stack frame(s).
                let _wait_for_b_guard = match b_runs_here {
                    None => Some(WaitForJobGuard::new(&b_job)),
                    Some(_) => None,
                };

                // Execute task A
                a_result = a();

                if let Some(b_job_ref) = b_runs_here {
                    b_job_ref.execute();
                }
                // wait for b here
            }
            (a_result, b_job.into_result())
        }
    }
}


#[cfg(feature="unstable-thread-sea")]
/// A thread pool based on rendezvous channels
#[derive(Debug)]
pub struct ThreadPool {
    sender: Sender<JobRef>,
    thread_count: usize,
}

#[cfg(feature="unstable-thread-sea")]
#[derive(Debug)]
struct LocalInfo {
    //sender: Sender<JobRef>,
    receiver: Receiver<JobRef>,
}

#[cfg(feature="unstable-thread-sea")]
impl ThreadPool {
    /// Create a new thread pool with `thread_count` worker threads.
    pub fn new(thread_count: usize) -> Self {
        // A rendezvous channel is used, because to avoid deadlocks,
        // we need to know for sure that any job we send (in join) will eventually get
        // completed, while we are waiting.
        let (sender, receiver) = bounded(0); // rendezvous
        let pool = ThreadPool { sender, thread_count };
        for _ in 0..thread_count {
            pool.add_thread(&receiver);
        }
        pool
    }

    /// Get the current pool thread count
    pub fn thread_count(&self) -> usize { self.thread_count }

    fn add_thread(&self, receiver: &Receiver<JobRef>) {
        let local = LocalInfo { receiver: receiver.clone() };
        std::thread::spawn(move || {
            let my_local = local;
            for job in my_local.receiver {
                unsafe {
                    job.execute();
                }
            }
        });
    }

    /// Run a and b simultaneously (and return their results, if applicable).
    ///
    /// A runs on the current thread while b runs on the sibling thread (also on current thread, if
    /// no other thread is available).
    ///
    /// A join uses *one* thread from the worker pool at most, this is because the job is split
    /// between the current thread and another working thread. Of course, in recursive splits, it
    /// may be the case that the current thread is a thread from the pool, too.
    pub fn join<A, B, RA, RB>(&self, a: A, b: B) -> (RA, RB)
        where A: FnOnce() -> RA + Send,
              B: FnOnce() -> RB + Send,
              RA: Send,
              RB: Send,
    {
        unsafe {
            // first send B, if any thread is idle
            let b_job = StackJob::new(b); // plant this safely on the stack
            let b_job_ref = JobRef::new(&b_job);
            let b_runs_here = match self.sender.try_send(b_job_ref) {
                Ok(_) => None,
                Err(e) => Some(e.into_inner()),
            };
            let a_result;
            {
                // Ensure that we will later wait for B, if it is running on
                // another thread. Both in the case of A panic or regular scope exit.
                //
                // If job A panics, we still cannot return until we are sure that job
                // B is complete. This is because it may contain references into the
                // enclosing stack frame(s).
                let _wait_for_b_guard = match b_runs_here {
                    None => Some(WaitForJobGuard::new(&b_job)),
                    Some(_) => None,
                };

                // Execute task A
                a_result = a();

                if let Some(b_job_ref) = b_runs_here {
                    b_job_ref.execute();
                }
                // wait for b here
            }
            (a_result, b_job.into_result())
        }
    }

    /// Take the `seed`, split it recursively using the splitter (until it does not split it
    /// anymore); execute the parts as jobs on the thread pool, use function `combine` to combine
    /// the return values.
    pub fn recursive_fork_join<S, FS, FE, FC, R>(&self, seed: S, splitter: FS, for_each: FE, combine: FC) -> R
        where FS: Fn(S) -> (S, Option<S>) + Sync,
              FE: Fn(S) -> R + Sync,
              FC: Fn(R, R) -> R + Sync,
              R: Send,
              S: Send,
    {
        self.recursive_join_(seed, &splitter, &for_each, &combine)
    }

    fn recursive_join_<S, FS, FE, FC, R>(&self, seed: S, splitter: &FS, for_each: &FE, combine: &FC) -> R
        where FS: Fn(S) -> (S, Option<S>) + Sync,
              FE: Fn(S) -> R + Sync,
              FC: Fn(R, R) -> R + Sync,
              R: Send,
              S: Send,
    {
        match splitter(seed) {
            (single, None) => for_each(single),
            (first, Some(second)) => {
                let (a, b) = self.join(
                    move || self.recursive_join_(first, splitter, for_each, combine),
                    move || self.recursive_join_(second, splitter, for_each, combine));
                combine(a, b)
            }
        }
    }
}

fn wait_for_job<F, R>(job: &StackJob<F, R>) {
    while !job.probe() {
        //spin_loop_hint();
        thread::yield_now();
    }
}

struct WaitForJobGuard<'a, F, R> {
    job: &'a StackJob<F, R>,
}

impl<'a, F, R> WaitForJobGuard<'a, F, R>
{
    fn new(job: &'a StackJob<F, R>) -> Self {
        Self { job }
    }
}

impl<'a, F, R> Drop for WaitForJobGuard<'a, F, R> {
    fn drop(&mut self) {
        wait_for_job(self.job)
    }
}

#[cfg(feature="unstable-thread-sea")]
#[cfg(test)]
mod tests {
    use super::*;
    use std::sync::atomic::AtomicUsize;
    use std::sync::atomic::Ordering;
    #[allow(deprecated)]
    fn sleep_ms(x: u32) {
        std::thread::sleep_ms(x)
    }
    #[test]
    fn it_works() {
        let pool = ThreadPool::new(10);
        pool.join(
            || {
                println!("I'm f!");
                sleep_ms(100);
                pool.join(|| {
                    println!("f.0");
                    pool.join(|| {
                        println!("f.0.0");
                        sleep_ms(500);
                    },
                    || {
                        println!("f.0.1");
                    });
                },
                || {
                    println!("f.1");
                    pool.join(|| {
                        println!("f.1.0");
                    },
                    || {
                        println!("f.1.1");
                    });
                });

            },
            || {
                println!("I'm g!"); sleep_ms(100)
            },
            );
        drop(pool);
        sleep_ms(100);
    }

    #[test]
    fn recursive() {
        let pool = ThreadPool::new(50);
        let ret = pool.recursive_fork_join(0..127, |x| {
            let len = x.end - x.start;
            let mid = x.start + len / 2;
            if len > 3 {
                (x.start..mid, Some(mid..x.end))
            } else {
                (x, None)
            }
            
        },
        |value| {
            println!("Thread: {:?}", value);
            value.sum::<i32>()
        },
        |a, b| a + b);
        assert_eq!(ret, (0..127).sum());
    }

    #[test]
    #[should_panic]
    fn panic_a() {
        let pool = ThreadPool::new(2);
        pool.join(|| panic!(), || 1 + 1);
    }

    #[test]
    #[should_panic]
    fn panic_b() {
        let pool = ThreadPool::new(2);
        pool.join(|| 1 + 1, || panic!());
    }

    #[test]
    #[should_panic]
    fn panic_both() {
        let pool = ThreadPool::new(2);
        pool.join(|| { sleep_ms(50); panic!("Panic in A") }, || panic!("Panic in B"));
    }

    #[test]
    fn on_panic_a_wait_for_b() {
        let pool = ThreadPool::new(2);
        for i in 0..3 {
            let start = AtomicUsize::new(0);
            let finish = AtomicUsize::new(0);
            let result = unwind::halt_unwinding(|| {
                pool.join(
                    || panic!("Panic in A"),
                    || {
                        start.fetch_add(1, Ordering::SeqCst);
                        sleep_ms(50);
                        finish.fetch_add(1, Ordering::SeqCst);
                    });
            });
            let start_count = start.load(Ordering::SeqCst);
            let finish_count = finish.load(Ordering::SeqCst);
            assert_eq!(start_count, finish_count);
            assert!(result.is_err());
            println!("Pass {} with start: {} == finish {}", i,
                     start_count, finish_count);
        }
    }
}

#[cfg(feature="unstable-thread-sea")]
#[cfg(test)]
mod sea_tests {
    use super::*;
    #[allow(deprecated)]

    #[test]
    fn thread_count_0() {
        let sea = ThreadSea::new(0);
        let pool1 = sea.reserve(0);
        //let pool2 = sea.reserve(1);
    }

    #[test]
    fn recursive() {
        let sea = ThreadSea::new(50);
        let pool1 = sea.reserve(25);

        pool1.recursive_fork_join(0..127, |x| {
            let len = x.end - x.start;
            let mid = x.start + len / 2;
            if len > 3 {
                (x.start..mid, Some(mid..x.end))
            } else {
                (x, None)
            }
            
        },
        |value| {
            println!("Thread: {:?}", value);
        },
        |_, _| ()
        );
        let pool2 = sea.reserve(50);
        //let pool2 = sea.reserve(50);
        drop(pool1);

        pool2.recursive_fork_join(0..127, |x| {
            let len = x.end - x.start;
            let mid = x.start + len / 2;
            if len > 3 {
                (x.start..mid, Some(mid..x.end))
            } else {
                (x, None)
            }
            
        },
        |value| {
            println!("Thread: {:?}", value);
        },
        |_, _| ()
        );
    }
}

#[cfg(test)]
mod thread_tree_tests {
    use super::*;
    #[allow(deprecated)]

    use std::sync::atomic::AtomicUsize;
    use std::sync::atomic::Ordering;
    use std::sync::Mutex;
    use once_cell::sync::Lazy;
    use std::collections::HashSet;
    use std::thread;
    use std::thread::ThreadId;

    #[allow(deprecated)]
    fn sleep_ms(x: u32) {
        std::thread::sleep_ms(x)
    }

    #[test]
    fn stub() {
        let tp = ThreadTree::stub();
        let a = AtomicUsize::new(0);
        let b = AtomicUsize::new(0);

        tp.top().join(|_| a.fetch_add(1, Ordering::SeqCst),
                |_| b.fetch_add(1, Ordering::SeqCst));
        assert_eq!(a.load(Ordering::SeqCst), 1);
        assert_eq!(b.load(Ordering::SeqCst), 1);

        let f = || thread::current().id();
        let (aid, bid) = tp.top().join(|_| f(), |_| f());
        assert_eq!(aid, bid);
        assert!(!tp.top().is_parallel());
    }

    #[test]
    fn new_level_1() {
        let tp = ThreadTree::new_level_1();
        let a = AtomicUsize::new(0);
        let b = AtomicUsize::new(0);

        tp.top().join(|_| a.fetch_add(1, Ordering::SeqCst),
                |_| b.fetch_add(1, Ordering::SeqCst));
        assert_eq!(a.load(Ordering::SeqCst), 1);
        assert_eq!(b.load(Ordering::SeqCst), 1);

        let f = || thread::current().id();
        let (aid, bid) = tp.top().join(|_| f(), |_| f());
        assert_ne!(aid, bid);
        assert!(tp.top().is_parallel());
    }

    #[test]
    fn build_level_2() {
        let tp = ThreadTree::new_with_level(2);
        let a = AtomicUsize::new(0);
        let b = AtomicUsize::new(0);

        tp.top().join(|_| a.fetch_add(1, Ordering::SeqCst),
                |_| b.fetch_add(1, Ordering::SeqCst));
        assert_eq!(a.load(Ordering::SeqCst), 1);
        assert_eq!(b.load(Ordering::SeqCst), 1);

        let f = || thread::current().id();
        let ((aid, bid), (cid, did)) = tp.top().join(
            |tp1| tp1.join(|_| f(), |_| f()),
            |tp1| tp1.join(|_| f(), |_| f()));
        assert_ne!(aid, bid);
        assert_ne!(aid, cid);
        assert_ne!(aid, did);
        assert_ne!(bid, cid);
        assert_ne!(bid, did);
        assert_ne!(cid, did);
    }

    #[test]
    fn overload_2_2() {
        let global = ThreadTree::new_level_1();
        let tp = ThreadTree::new_with_level(2);
        let a = AtomicUsize::new(0);

        let range = 0..100;

        let work = |ctx: ThreadTreeCtx<'_>| {
            let subwork = || {
                for i in range.clone() {
                    a.fetch_add(i, Ordering::Relaxed);
                    sleep_ms(1);
                }
            };
            ctx.join(|_| subwork(), |_| subwork());
        };

        global.top().join(
            |_| tp.top().join(work, work),
            |_| tp.top().join(work, work));

        let sum = range.clone().sum::<usize>();

        assert_eq!(sum * 4 * 2, a.load(Ordering::SeqCst));

    }

    #[test]
    fn deep_tree() {
        static THREADS: Lazy<Mutex<HashSet<ThreadId>>> = Lazy::new(|| Mutex::default());
        const TREE_LEVEL: usize = 8;
        const MAX_DEPTH: usize = 12;

        static COUNT: AtomicUsize = AtomicUsize::new(0);

        let tp = ThreadTree::new_with_level(TREE_LEVEL);

        fn f(tp: ThreadTreeCtx<'_>, depth: usize) {
            COUNT.fetch_add(1, Ordering::SeqCst);
            THREADS.lock().unwrap().insert(thread::current().id());
            if depth >= MAX_DEPTH {
                return;
            }
            tp.join(
                |ctx| {
                    f(ctx, depth + 1);
                },
                |ctx| {
                    f(ctx, depth + 1);
                });
        }

        COUNT.fetch_add(2, Ordering::SeqCst); // for the two invocations below.
        tp.top().join(|ctx| f(ctx, 2), |ctx| f(ctx, 2));
        let visited_threads = THREADS.lock().unwrap().len();
        assert_eq!(visited_threads, 1 << TREE_LEVEL);
        assert_eq!(COUNT.load(Ordering::SeqCst), 1 << MAX_DEPTH);
    }
}