1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
//! # Thread scoped reference //! //! A library that is similar to a thread local storage but allows to store references / dyn //! Trait within a scope. //! //! It's similar to `std::thread_local` but allows you to store non-static references. Since the //! reference is non-static, the value has to be scoped (the reference MUST NOT escape the scope). //! It also works with dynamic dispatch (e.g. `dyn Trait`). Scopes can be nested. Everything is //! thread-local. //! //! # Example //! //! ``` //! use thread_scoped_ref::{thread_scoped_ref, scoped, with}; //! //! /// Declare the `REF_TO_A_STRING`. //! thread_scoped_ref!(REF_TO_A_STRING, str); //! //! /// This function reads the value and prints the value. //! fn value_consumer() { //! with(&REF_TO_A_STRING, |maybe_string| { //! // `maybe_string` is `Some` if this is called within a scope, or `None` if not called //! // within a scope. //! if let Some(string) = maybe_string { //! println!("String is: '{}'", string); //! } else { //! println!("There's no string."); //! } //! }); //! } //! //! // Example #1: prints `There's no string` (since not called within a scope). //! value_consumer(); //! //! // Example #2: With a scope. //! let my_string = "The String!".to_string(); //! // note: We use the reference and not the actual string. It's not static! //! let my_string_ref = &my_string; //! scoped(&REF_TO_A_STRING, my_string_ref, || { //! // prints `String is: 'The String!'` //! value_consumer(); //! }); //! //! // Example #3: Nested scopes. //! let another_string = "Another string".to_string(); //! scoped(&REF_TO_A_STRING, &another_string, || { //! // prints `String is: 'Another string'` //! value_consumer(); //! // a nested scope. //! scoped(&REF_TO_A_STRING, my_string_ref, || { //! // prints `String is: 'The String!'` //! value_consumer(); //! }); //! // prints `String is: 'Another string'` //! value_consumer(); //! }); //! //! // Example #4: No scope (like example 1). prints `There's no string`. //! value_consumer(); //! ``` //! //! # Use case //! //! It's useful if you need to 'inject' some sort of context into a function you can't modify. One //! example is Serde - the serialize/deserialize methods don't provide a possibility to supply //! a custom context; with this library this becomes possible. It would be no problem if you //! owned the context - but if you only have a reference to the context it gets harder. //! //! For example, say you have some sort of messaging system (IPC) and the client gets this: //! //! ```rust,ignore //! struct Handle(u32); //! //! /// This is the message the client receives from the server. //! struct Message { //! payload : Vec<u8>, //! handles : Vec<Handle>, //! } //! ``` //! //! Note that the handles are transferred independently (since the IPC-system has to inspect them; //! validate and maybe transform). Now say we want to deserialize something like this: //! //! ```rust,ignore //! #[derive(Deserialize)] //! struct TheStruct { //! // this data is from `payload: Vec<u8>` (nothing special here) //! description : String, //! // this data is from `payload: Vec<u8>` (nothing special here) //! extended : bool, //! // !!!: This data comes from `handles: Vec<Handle>` and not from `payload: Vec<u8>` //! master_handle : Handle, //! // !!!: This data comes from `handles: Vec<Handle>` and not from `payload: Vec<u8>` //! slave_handle : Handle, //! // this data is from `payload: Vec<u8>` (nothing special here) //! path : Vec<String> //! } //! ``` //! //! Something like this can be achieved with the thread scoped references. See the Serde demo //! tests for details. mod helper; mod scope; pub use helper::*; pub use scope::Scope; /// A shortcut macro for `thread_local! { static IDENTIFIER : Scope<Type> = Scope::default() }`. /// /// # See also /// /// * [`with`] /// * [`scoped`] /// /// # Examples /// /// With a struct: /// /// ``` /// use thread_scoped_ref::{thread_scoped_ref, scoped, with}; /// /// struct MyStruct(String); /// /// thread_scoped_ref!(MY_STRUCT, MyStruct); /// /// // use it: /// let demo_struct = MyStruct("Hello".to_string()); /// /// scoped(&MY_STRUCT, &demo_struct, || { /// with(&MY_STRUCT, |maybe_my_struct_ref| { /// assert_eq!("Hello", maybe_my_struct_ref.unwrap().0); /// }) /// }) /// ``` /// /// With a trait / dynamic dispatch (note the `dyn`): /// /// ``` /// use thread_scoped_ref::{thread_scoped_ref, scoped, with}; /// /// trait MyTrait { /// fn string(&self) -> &str; /// } /// /// struct StructImplementingMyTrait(String); /// /// impl MyTrait for StructImplementingMyTrait { /// fn string(&self) -> &str { /// &self.0 /// } /// } /// /// thread_scoped_ref!(MY_TRAIT, dyn MyTrait); /// /// // use it: /// let my_struct = StructImplementingMyTrait("Hello World".to_string()); /// /// scoped(&MY_TRAIT, &my_struct, || { /// with(&MY_TRAIT, |maybe_my_trait_ref| { /// assert_eq!("Hello World", maybe_my_trait_ref.unwrap().string()); /// }) /// }) /// ``` /// /// [`with`]: fn.with.html /// [`scoped`]: fn.scoped.html #[macro_export] macro_rules! thread_scoped_ref { ($identifier:ident, $typ:ty) => { std::thread_local! { static $identifier: $crate::Scope<$typ> = $crate::Scope::default(); } }; }