1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
//! VeChain transactions support.
use crate::address::{Address, AddressConvertible, PrivateKey};
use crate::rlp::{
lstrip, static_left_pad, AsBytes, AsVec, BufMut, Bytes, BytesMut, Decodable, Encodable, Maybe,
RLPError,
};
use crate::utils::blake2_256;
use crate::{rlp_encodable, U256};
use secp256k1::ecdsa::{RecoverableSignature, RecoveryId};
use secp256k1::{Message, PublicKey, Secp256k1};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
rlp_encodable! {
/// Represents a single VeChain transaction.
#[cfg_attr(feature="serde", serde_with::serde_as)]
#[cfg_attr(feature="serde", derive(Deserialize, Serialize))]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Transaction {
/// Chain tag
#[cfg_attr(feature="serde", serde(rename="chainTag"))]
pub chain_tag: u8,
/// Previous block reference
///
/// First 4 bytes (BE) are block height, the rest is part of referred block ID.
#[cfg_attr(feature="serde", serde(rename="blockRef"))]
pub block_ref: u64,
/// Expiration (in blocks)
pub expiration: u32,
/// Vector of clauses
pub clauses: Vec<Clause>,
/// Coefficient to calculate the gas price.
#[cfg_attr(feature="serde", serde(rename="gasPriceCoef"))]
pub gas_price_coef: u8,
/// Maximal amount of gas to spend for transaction.
pub gas: u64,
/// Hash of transaction on which current transaction depends.
///
/// May be left unspecified if this functionality is not necessary.
#[cfg_attr(feature="serde", serde(rename="dependsOn"))]
pub depends_on: Option<U256> => AsBytes<U256>,
/// Transaction nonce
pub nonce: u64,
/// Reserved fields.
pub reserved: Option<Reserved> => AsVec<Reserved>,
/// Signature. 65 bytes for regular transactions, 130 - for VIP-191.
///
/// Ignored when making a signing hash.
///
/// For VIP-191 transactions, this would be a simple concatenation
/// of two signatures.
#[cfg_attr(feature="serde", serde(with = "serde_with::As::<Option<crate::utils::unhex::Hex>>"))]
pub signature: Option<Bytes> => Maybe<Bytes>,
}
}
// TODO: add serde optional support
impl Transaction {
/// Gas cost for whole transaction execution.
pub const TRANSACTION_GAS: u64 = 5_000;
pub fn get_signing_hash(&self) -> [u8; 32] {
//! Get a signing hash for this transaction.
let mut encoded = Vec::with_capacity(1024);
let mut without_signature = self.clone();
without_signature.signature = None;
without_signature.encode(&mut encoded);
blake2_256(&[encoded])
}
pub fn get_delegate_signing_hash(&self, delegate_for: &Address) -> [u8; 32] {
//! Get a signing hash for this transaction with fee delegation.
//!
//! `VIP-191 <https://github.com/vechain/VIPs/blob/master/vips/VIP-191.md>`
let main_hash = self.get_signing_hash();
blake2_256(&[&main_hash[..], &delegate_for.to_fixed_bytes()[..]])
}
pub fn sign(self, private_key: &PrivateKey) -> Self {
//! Create a copy of transaction with a signature emplaced.
//!
//! You can call `.encode()` on the result to get bytes ready to be sent
//! over wire.
let hash = self.get_signing_hash();
let signature = Self::sign_hash(hash, private_key);
self.with_signature(Bytes::copy_from_slice(&signature))
.expect("generated signature must be correct")
}
fn signature_length_valid(&self) -> bool {
match &self.signature {
None => true,
Some(signature) => {
self.is_delegated() && signature.len() == 130
|| !self.is_delegated() && signature.len() == 65
}
}
}
pub fn with_signature(self, signature: Bytes) -> Result<Self, secp256k1::Error> {
//! Set a signature for this transaction.
let copy = Self {
signature: Some(signature),
..self
};
if copy.signature_length_valid() {
Ok(copy)
} else {
Err(secp256k1::Error::IncorrectSignature)
}
}
pub fn sign_hash(hash: [u8; 32], private_key: &PrivateKey) -> [u8; 65] {
//! Sign a hash obtained from `Transaction::get_signing_hash`.
let secp = Secp256k1::signing_only();
let signature =
secp.sign_ecdsa_recoverable(&Message::from_slice(&hash).unwrap(), private_key);
let (recovery_id, bytes) = signature.serialize_compact();
bytes
.into_iter()
.chain([recovery_id.to_i32() as u8])
.collect::<Vec<_>>()
.try_into()
.unwrap()
}
pub fn intrinsic_gas(&self) -> u64 {
//! Calculate the intrinsic gas amount required for this transaction.
//!
//! This amount is always less than actual amount of gas necessary.
//! `More info <https://docs.vechain.org/core-concepts/transactions/transaction-calculation>`
let clauses_cost = if self.clauses.is_empty() {
Clause::REGULAR_CLAUSE_GAS
} else {
self.clauses.iter().map(Clause::intrinsic_gas).sum()
};
clauses_cost + Self::TRANSACTION_GAS
}
pub fn origin(&self) -> Result<Option<PublicKey>, secp256k1::Error> {
//! Recover origin public key using the signature.
//!
//! Returns `Ok(None)` if signature is unset.
match &self.signature {
None => Ok(None),
Some(signature) if self.signature_length_valid() => {
let hash = self.get_signing_hash();
let secp = Secp256k1::verification_only();
Ok(Some(secp.recover_ecdsa(
&Message::from_slice(&hash)?,
&RecoverableSignature::from_compact(
&signature[..64],
RecoveryId::from_i32(signature[64] as i32)?,
)?,
)?))
}
_ => Err(secp256k1::Error::IncorrectSignature),
}
}
pub fn delegator(&self) -> Result<Option<PublicKey>, secp256k1::Error> {
//! Recover delegator public key using the signature.
//!
//! Returns `Ok(None)` if signature is unset or transaction is not delegated.
if !self.is_delegated() {
return Ok(None);
}
match &self.signature {
None => Ok(None),
Some(signature) if self.signature_length_valid() => {
let hash = self.get_delegate_signing_hash(
&self
.origin()?
.expect("Must be set, already checked signature")
.address(),
);
let secp = Secp256k1::verification_only();
Ok(Some(secp.recover_ecdsa(
&Message::from_slice(&hash)?,
&RecoverableSignature::from_compact(
&signature[65..129],
RecoveryId::from_i32(signature[129] as i32)?,
)?,
)?))
}
_ => Err(secp256k1::Error::IncorrectSignature),
}
}
pub fn is_delegated(&self) -> bool {
//! Check if transaction is VIP-191 delegated.
if let Some(reserved) = &self.reserved {
reserved.is_delegated()
} else {
false
}
}
pub fn id(&self) -> Result<Option<[u8; 32]>, secp256k1::Error> {
//! Calculate transaction ID using the signature.
//!
//! Returns `Ok(None)` if signature is unset.
match self.origin()? {
None => Ok(None),
Some(origin) => Ok(Some(blake2_256(&[
&self.get_signing_hash()[..],
&origin.address().to_fixed_bytes()[..],
]))),
}
}
pub fn has_valid_signature(&self) -> bool {
//! Check wheter the signature is valid.
self._has_valid_signature().unwrap_or(false)
}
fn _has_valid_signature(&self) -> Result<bool, secp256k1::Error> {
//! Check wheter the signature is valid.
if !self.signature_length_valid() {
return Ok(false);
}
match &self.signature {
None => Ok(false),
Some(signature) => {
let hash = self.get_signing_hash();
let secp = Secp256k1::verification_only();
Ok(secp
.recover_ecdsa(
&Message::from_slice(&hash)?,
&RecoverableSignature::from_compact(
&signature[..64],
RecoveryId::from_i32(signature[64] as i32)?,
)?,
)
.is_ok())
}
}
}
pub fn to_broadcastable_bytes(&self) -> Result<Bytes, secp256k1::Error> {
//! Create a binary representation.
//!
//! Returns `Err(secp256k1::Error::IncorrectSignature)` if signature is not set.
if self.signature.is_some() {
let mut buf = BytesMut::new();
self.encode(&mut buf);
Ok(buf.into())
} else {
Err(secp256k1::Error::IncorrectSignature)
}
}
}
rlp_encodable! {
/// Represents a single transaction clause (recipient, value and data).
#[cfg_attr(feature="serde", serde_with::serde_as)]
#[cfg_attr(feature="serde", derive(Deserialize, Serialize))]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Clause {
/// Recipient
pub to: Option<Address> => AsBytes<Address>,
/// Amount of funds to spend.
pub value: U256,
/// Contract code or other data.
#[cfg_attr(feature="serde", serde(with = "serde_with::As::<crate::utils::unhex::Hex>"))]
pub data: Bytes,
}
}
impl Clause {
/// Gas spent for one regular clause execution.
pub const REGULAR_CLAUSE_GAS: u64 = 16_000;
/// Gas spent for one contract creation (without `to`) clause execution.
pub const CONTRACT_CREATION_CLAUSE_GAS: u64 = 48_000;
/// Intrinsic gas usage for a single zero byte of data.
pub const ZERO_DATA_BYTE_GAS_COST: u64 = 4;
/// Intrinsic gas usage for a single non-zero byte of data.
pub const NONZERO_DATA_BYTE_GAS_COST: u64 = 68;
pub fn intrinsic_gas(&self) -> u64 {
//! Calculate the intrinsic gas amount required for executing this clause.
//!
//! This amount is always less than actual amount of gas necessary.
//! `More info <https://docs.vechain.org/core-concepts/transactions/transaction-calculation>`
let clause_gas = if self.to.is_some() {
Self::REGULAR_CLAUSE_GAS
} else {
Self::CONTRACT_CREATION_CLAUSE_GAS
};
let data_gas: u64 = self
.data
.iter()
.map(|&b| {
if b == 0 {
Self::ZERO_DATA_BYTE_GAS_COST
} else {
Self::NONZERO_DATA_BYTE_GAS_COST
}
})
.sum();
clause_gas + data_gas
}
}
/// Represents a transaction's ``reserved`` field.
#[cfg_attr(feature = "serde", serde_with::serde_as)]
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Reserved {
/// Features to enable (bitmask).
pub features: u32,
/// Currently unused field.
#[cfg_attr(
feature = "serde",
serde(with = "serde_with::As::<Vec<crate::utils::unhex::Hex>>")
)]
pub unused: Vec<Bytes>,
}
impl Encodable for Reserved {
fn encode(&self, out: &mut dyn BufMut) {
let mut buf = vec![];
self.features.to_be_bytes().encode(&mut buf);
let mut stripped_buf: Vec<_> = [lstrip(&buf[1..])]
.into_iter()
.map(Bytes::from)
.chain(self.unused.clone())
.rev()
.skip_while(Bytes::is_empty)
.collect();
stripped_buf.reverse();
stripped_buf.encode(out)
}
}
impl Decodable for Reserved {
fn decode(buf: &mut &[u8]) -> Result<Self, RLPError> {
if let Some((feature_bytes, unused)) = Vec::<Bytes>::decode(buf)?.split_first() {
Ok(Self {
features: u32::from_be_bytes(static_left_pad(feature_bytes)?),
unused: unused.to_vec(),
})
} else {
Ok(Self::new_empty())
}
}
}
impl Reserved {
/// Features bitmask for delegated transaction.
pub const DELEGATED_BIT: u32 = 1;
pub fn new_delegated() -> Self {
//! Create reserved structure kind for VIP-191 delegation.
Self {
features: Self::DELEGATED_BIT,
unused: vec![],
}
}
pub fn new_empty() -> Self {
//! Create reserved structure kind for regular transaction.
Self {
features: 0,
unused: vec![],
}
}
pub fn is_delegated(&self) -> bool {
//! Belongs to delegated transaction?
self.features & Self::DELEGATED_BIT != 0
}
pub fn is_empty(&self) -> bool {
//! Belongs to delegated transaction?
self.features == 0 && self.unused.is_empty()
}
}