1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
//! This module enables RLP encoding of high-level objects.
//!
//! RLP (recursive length prefix) is a common algorithm for encoding
//! of variable length binary data. RLP encodes data before storing on disk
//! or transmitting via network.
//!
//! Theory
//! ------
//!
//! Encoding
//! ********
//!
//! Primary RLP can only deal with "item" type, which is defined as:
//!
//! - Byte string ([`Bytes`]) or
//! - Sequence of items ([`Vec`], fixed array or slice).
//!
//! Some examples are:
//!
//! * ``b'\x00\xff'``
//! * empty list ``vec![]``
//! * list of bytes ``vec![vec![0u8], vec![1u8, 3u8]]``
//! * list of combinations ``vec![vec![], vec![0u8], vec![vec![0]]]``
//!
//! The encoded result is always a byte string (sequence of [`u8`]).
//!
//! Encoding algorithm
//! ******************
//!
//! Given `x` item as input, we define `rlp_encode` as the following algorithm:
//!
//! Let `concat` be a function that joins given bytes into single byte sequence.
//! 1. If `x` is a single byte and `0x00 <= x <= 0x7F`, `rlp_encode(x) = x`.
//! 1. Otherwise, if `x` is a byte string, let `len(x)` be length of `x` in bytes
//! and define encoding as follows:
//! * If `0 < len(x) < 0x38` (note that empty byte string fulfills this requirement), then
//! ```txt
//! rlp_encode(x) = concat(0x80 + len(x), x)
//! ```
//! In this case first byte is in range `[0x80; 0xB7]`.
//! * If `0x38 <= len(x) <= 0xFFFFFFFF`, then
//! ```txt
//! rlp_encode(x) = concat(0xB7 + len(len(x)), len(x), x)
//! ```
//! In this case first byte is in range `[0xB8; 0xBF]`.
//! * For longer strings encoding is undefined.
//! 1. Otherwise, if `x` is a list, let `s = concat(map(rlp_encode, x))`
//! be concatenation of RLP encodings of all its items.
//! * If `0 < len(s) < 0x38` (note that empty list matches), then
//! ```txt
//! rlp_encode(x) = concat(0xC0 + len(s), s)
//! ```
//! In this case first byte is in range `[0xC0; 0xF7]`.
//! * If `0x38 <= len(s) <= 0xFFFFFFFF`, then
//! ```txt
//! rlp_encode(x) = concat(0xF7 + len(len(s)), len(s), x)
//! ```
//! In this case first byte is in range `[0xF8; 0xFF]`.
//! * For longer lists encoding is undefined.
//!
//! See more in [Ethereum wiki](https://eth.wiki/fundamentals/rlp).
//!
//! Encoding examples
//! *****************
//!
//! | ``x`` | ``rlp_encode(x)`` |
//! |-------------------|--------------------------------|
//! | ``b''`` | ``0x80`` |
//! | ``b'\x00'`` | ``0x00`` |
//! | ``b'\x0F'`` | ``0x0F`` |
//! | ``b'\x79'`` | ``0x79`` |
//! | ``b'\x80'`` | ``0x81 0x80`` |
//! | ``b'\xFF'`` | ``0x81 0xFF`` |
//! | ``b'foo'`` | ``0x83 0x66 0x6F 0x6F`` |
//! | ``[]`` | ``0xC0`` |
//! | ``[b'\x0F']`` | ``0xC1 0x0F`` |
//! | ``[b'\xEF']`` | ``0xC1 0x81 0xEF`` |
//! | ``[[], [[]]]`` | ``0xC3 0xC0 0xC1 0xC0`` |
//!
//!
//! Serialization
//! *************
//!
//! However, in the real world, the inputs are not pure bytes nor lists.
//! We need a way to encode numbers (like [`u64`]), custom structs, enums and other
//! more complex machinery that exists in the surrounding code.
//!
//! This library wraps [`open_fastrlp`](https://docs.rs/open-fastrlp/0.1.4/open_fastrlp/)
//! crate, so everything mentioned there about [`Encodable`] and [`Decodable`] traits still
//! applies. You can implement those for any object to make it RLP-serializable.
//!
//! However, following this approach directly results in cluttered code: your `struct`s
//! now have to use field types that match serialization, which may be very inconvenient.
//!
//! To avoid this pitfall, this RLP implementation allows "extended" struct definition
//! via a macro. Let's have a look at `Transaction` definition:
//!
//! ```rust
//! use thor_devkit::rlp::{AsBytes, AsVec, Maybe, Bytes};
//! use thor_devkit::{rlp_encodable, U256};
//! use thor_devkit::transactions::{Clause, Reserved};
//!
//! rlp_encodable! {
//! /// Represents a single VeChain transaction.
//! #[derive(Clone, Debug, Eq, PartialEq)]
//! pub struct Transaction {
//! /// Chain tag
//! pub chain_tag: u8,
//! pub block_ref: u64,
//! pub expiration: u32,
//! pub clauses: Vec<Clause>,
//! pub gas_price_coef: u8,
//! pub gas: u64,
//! pub depends_on: Option<U256> => AsBytes<U256>,
//! pub nonce: u64,
//! pub reserved: Option<Reserved> => AsVec<Reserved>,
//! pub signature: Option<Bytes> => Maybe<Bytes>,
//! }
//! }
//! ```
//!
//! What's going on here? First, some fields are encoded "as usual": unsigned integers
//! are encoded just fine and you likely won't need any different encoding. However,
//! some fields work in a different way. `depends_on` is a number that may be present
//! or absent, and it should be encoded as a byte sting. `U256` is already encoded this
//! way, but `None` is not ([`Option`] is not RLP-serializable on itself). So we wrap it
//! in a special wrapper: [`AsBytes`]. [`AsBytes<T>`] will serialize `Some(T)` as `T` and
//! [`None`] as an empty byte string.
//!
//! `reserved` is a truly special struct that has custom encoding implemented for it.
//! That implementation serializes `Reserved` into a [`Vec<Bytes>`], and then serializes
//! this [`Vec<Bytes>`] to the output stream. If it is empty, an empty vector should be
//! written instead. This is achieved via [`AsVec`] annotation.
//!
//! [`Maybe`] is a third special wrapper. Fields annotated with [`Maybe`] may only be placed
//! last (otherwise encoding is ambiguous), and with [`Maybe<T>`] `Some(T)` is serialized
//! as `T` and [`None`] --- as nothing (zero bytes added).
//!
//! Fields comments are omitted here for brevity, they are preserved as well.
//!
//! This macro adds both decoding and encoding capabilities. See examples folder
//! for more examples of usage, including custom types and machinery.
//!
//! Note that this syntax is not restricted to these three wrappers, you can use
//! any types with proper [`From`] implementation:
//!
//! ```rust
//! use thor_devkit::rlp_encodable;
//!
//! #[derive(Clone)]
//! struct MySeries {
//! left: [u8; 2],
//! right: [u8; 2],
//! }
//!
//! impl From<MySeries> for u32 {
//! fn from(value: MySeries) -> Self {
//! Self::from_be_bytes(value.left.into_iter().chain(value.right).collect::<Vec<_>>().try_into().unwrap())
//! }
//! }
//! impl From<u32> for MySeries {
//! fn from(value: u32) -> Self {
//! let [a, b, c, d] = value.to_be_bytes();
//! Self{ left: [a, b], right: [c, d] }
//! }
//! }
//!
//! rlp_encodable! {
//! pub struct Foo {
//! pub foo: MySeries => u32,
//! }
//! }
//! ```
//!
pub use bytes::{Buf, BufMut, Bytes, BytesMut};
pub use open_fastrlp::{Decodable, DecodeError as RLPError, Encodable, Header};
#[doc(hidden)]
#[macro_export]
macro_rules! __encode_as {
($out:expr, $field:expr) => {{
use $crate::rlp::Encodable;
$field.encode($out)
}};
($out:expr, $field:expr => $cast:ty) => {{
use $crate::rlp::Encodable;
// TODO: this clone bugs me, we should be able to do better
<$cast>::from($field.clone()).encode($out)
}};
($out:expr, $field:expr $(=> $cast:ty)?, $($fields:expr $(=> $casts:ty)?),+) => {{
$crate::__encode_as! { $out, $field $(=> $cast)? }
$crate::__encode_as! { $out, $($fields $(=> $casts)?),+ }
}};
}
#[doc(hidden)]
#[macro_export]
macro_rules! __decode_as {
($buf:expr, $field:ty) => {{
#[allow(unused_imports)]
use $crate::rlp::Decodable;
<$field>::decode($buf)?
}};
($buf:expr, $field:ty => $cast:ty) => {{
#[allow(unused_imports)]
use $crate::rlp::Decodable;
<$field>::from(<$cast>::decode($buf)?)
}};
($buf:expr, $field:ty $(=> $cast:ty)?, $($fields:ty $(=> $casts:ty)?),+) => {{
$crate::__decode_as! { $buf, $field $(=> $cast)? }
$crate::__decode_as! { $buf, $($fields $(=> $casts)?),+ }
}};
}
/// Create an RLP-encodable struct by specifying types to cast to.
#[macro_export]
macro_rules! rlp_encodable {
(
$(#[$attr:meta])*
$vis:vis struct $name:ident {
$(
$(#[$field_attr:meta])*
$field_vis:vis $field_name:ident: $field_type:ty $(=> $cast:ty)?,
)*
}
) => {
$(#[$attr])*
$vis struct $name {
$(
$(#[$field_attr])*
$field_vis $field_name: $field_type,
)*
}
impl $name {
fn encode_internal(&self, out: &mut dyn $crate::rlp::BufMut) {
$crate::__encode_as!(out, $(self.$field_name $(=> $cast)?),+)
}
}
impl $crate::rlp::Encodable for $name {
fn encode(&self, out: &mut dyn $crate::rlp::BufMut) {
let mut buf = $crate::rlp::BytesMut::new();
self.encode_internal(&mut buf);
$crate::rlp::Header {
list: true,
payload_length: buf.len()
}.encode(out);
out.put_slice(&buf)
}
}
impl $crate::rlp::Decodable for $name {
fn decode(buf: &mut &[u8]) -> Result<Self, $crate::rlp::RLPError> {
$crate::rlp::Header::decode(buf)?;
Ok(Self {
$($field_name: $crate::__decode_as!(buf, $field_type $(=> $cast)? )),*
})
}
}
}
}
/// Serialization wrapper for `Option` to serialize `None` as empty `Bytes`.
///
/// <div class="warning">
/// Do not use it directly: it is only intended for use with `rlp_encodable!` macro.
/// </div>
pub enum AsBytes<T: Encodable + Decodable> {
#[doc(hidden)]
Just(T),
#[doc(hidden)]
Nothing,
}
impl<T: Encodable + Decodable> Encodable for AsBytes<T> {
fn encode(&self, out: &mut dyn BufMut) {
match self {
Self::Just(value) => value.encode(out),
Self::Nothing => Bytes::new().encode(out),
}
}
}
impl<T: Encodable + Decodable, S: Into<T>> From<Option<S>> for AsBytes<T> {
fn from(value: Option<S>) -> Self {
match value {
Some(v) => Self::Just(v.into()),
None => Self::Nothing,
}
}
}
impl<T: Encodable + Decodable> From<AsBytes<T>> for Option<T> {
fn from(value: AsBytes<T>) -> Self {
match value {
AsBytes::Just(v) => Self::Some(v),
AsBytes::Nothing => Self::None,
}
}
}
impl<T: Encodable + Decodable> Decodable for AsBytes<T> {
fn decode(buf: &mut &[u8]) -> Result<Self, open_fastrlp::DecodeError> {
if buf[0] == open_fastrlp::EMPTY_STRING_CODE {
Bytes::decode(buf)?;
Ok(Self::Nothing)
} else {
Ok(Self::Just(T::decode(buf)?))
}
}
}
/// Serialization wrapper for `Option` to serialize `None` as empty `Vec`.
///
/// <div class="warning">
/// Do not use it directly: it is only intended for use with `rlp_encodable!` macro.
/// </div>
pub enum AsVec<T: Encodable + Decodable> {
#[doc(hidden)]
Just(T),
#[doc(hidden)]
Nothing,
}
impl<T: Encodable + Decodable> Encodable for AsVec<T> {
fn encode(&self, out: &mut dyn BufMut) {
match self {
Self::Just(value) => value.encode(out),
Self::Nothing => Vec::<u8>::new().encode(out),
}
}
}
impl<T: Encodable + Decodable, S: Into<T>> From<Option<S>> for AsVec<T> {
fn from(value: Option<S>) -> Self {
match value {
Some(v) => Self::Just(v.into()),
None => Self::Nothing,
}
}
}
impl<T: Encodable + Decodable> From<AsVec<T>> for Option<T> {
fn from(value: AsVec<T>) -> Self {
match value {
AsVec::Just(v) => Self::Some(v),
AsVec::Nothing => Self::None,
}
}
}
impl<T: Encodable + Decodable> Decodable for AsVec<T> {
fn decode(buf: &mut &[u8]) -> Result<Self, open_fastrlp::DecodeError> {
if buf[0] == open_fastrlp::EMPTY_LIST_CODE {
Vec::<u8>::decode(buf)?;
Ok(Self::Nothing)
} else {
Ok(Self::Just(T::decode(buf)?))
}
}
}
/// Serialization wrapper for `Option` to serialize `None` as nothing (do not modify
/// output stream).
///
/// <div class="warning">
/// Do not use it directly: it is only intended for use with `rlp_encodable!` macro.
/// </div>
pub enum Maybe<T: Encodable + Decodable> {
#[doc(hidden)]
Just(T),
#[doc(hidden)]
Nothing,
}
impl<T: Encodable + Decodable> Encodable for Maybe<T> {
fn encode(&self, out: &mut dyn BufMut) {
match self {
Self::Just(value) => value.encode(out),
Self::Nothing => (),
}
}
}
impl<T: Encodable + Decodable> Decodable for Maybe<T> {
fn decode(buf: &mut &[u8]) -> Result<Self, open_fastrlp::DecodeError> {
if buf.remaining() == 0 {
Ok(Self::Nothing)
} else {
Ok(Self::Just(T::decode(buf)?))
}
}
}
impl<T: Encodable + Decodable, S: Into<T>> From<Option<S>> for Maybe<T> {
fn from(value: Option<S>) -> Self {
match value {
Some(v) => Self::Just(v.into()),
None => Self::Nothing,
}
}
}
impl<T: Encodable + Decodable> From<Maybe<T>> for Option<T> {
fn from(value: Maybe<T>) -> Self {
match value {
Maybe::Just(v) => Self::Some(v),
Maybe::Nothing => Self::None,
}
}
}
#[inline]
pub(crate) fn lstrip<S: AsRef<[u8]>>(bytes: S) -> Vec<u8> {
bytes
.as_ref()
.iter()
.skip_while(|&&x| x == 0)
.copied()
.collect()
}
#[inline]
pub(crate) fn static_left_pad<const N: usize>(
data: &[u8],
) -> Result<[u8; N], open_fastrlp::DecodeError> {
if data.len() > N {
return Err(open_fastrlp::DecodeError::Overflow);
}
let mut v = [0; N];
if data.is_empty() {
return Ok(v);
}
if data[0] == 0 {
return Err(open_fastrlp::DecodeError::LeadingZero);
}
// SAFETY: length checked above
unsafe { v.get_unchecked_mut(N - data.len()..) }.copy_from_slice(data);
Ok(v)
}