Expand description
Symbolic integration module for computing indefinite integrals.
This module provides functionality for computing antiderivatives of mathematical expressions using standard integration techniques including:
- Power rule
- Sum and difference rules
- Constant multiple rule
- Standard integrals table (trigonometric, exponential, logarithmic)
§Example
use thales::integration::{integrate, IntegrationError};
use thales::ast::{Expression, Variable};
// Integrate x^2 with respect to x
let x = Expression::Variable(Variable::new("x"));
let x_squared = Expression::Power(Box::new(x.clone()), Box::new(Expression::Integer(2)));
let result = integrate(&x_squared, "x").unwrap();
// Result: x^3/3 + C (constant of integration handled separately)Enums§
- Integration
Error - Error types that can occur during integration.
Functions§
- definite_
integral - Compute the definite integral of an expression over [lower, upper].
- definite_
integral_ with_ fallback - Compute definite integral with numerical fallback.
- definite_
integral_ with_ steps - Compute definite integral with step-by-step explanation.
- improper_
integral_ to_ infinity - Evaluate improper integral ∫_a^∞ f(x) dx using limit.
- integrate
- Compute the indefinite integral of an expression with respect to a variable.
- integrate_
by_ parts - Attempt to integrate using integration by parts: ∫u dv = uv - ∫v du
- integrate_
by_ parts_ with_ steps - Integration by parts with detailed steps.
- integrate_
by_ substitution - Attempt to integrate using u-substitution.
- integrate_
with_ substitution - Public function for u-substitution with step tracking.
- numerical_
integrate - Numerical integration using adaptive Simpson’s rule.
- tabular_
integration - Tabular method for integration by parts.
Type Aliases§
- Integration
Result - Result type for integration operations.