1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
use std::ffi::c_void;

#[link(name = "tfhe_cuda_backend", kind = "static")]
extern "C" {

    /// Create a new Cuda stream on GPU `gpu_index`
    pub fn cuda_create_stream(gpu_index: u32) -> *mut c_void;

    /// Destroy the Cuda stream `v_stream`
    pub fn cuda_destroy_stream(stream: *mut c_void, gpu_index: u32);

    /// Allocate `size` memory on GPU `gpu_index` asynchronously
    pub fn cuda_malloc_async(size: u64, stream: *mut c_void, gpu_index: u32) -> *mut c_void;

    /// Copy `size` memory asynchronously from `src` on GPU `gpu_index` to `dest` on CPU using
    /// the Cuda stream `v_stream`.
    pub fn cuda_memcpy_async_to_cpu(
        dest: *mut c_void,
        src: *const c_void,
        size: u64,
        stream: *mut c_void,
        gpu_index: u32,
    );

    /// Copy `size` memory asynchronously from `src` on CPU to `dest` on GPU `gpu_index` using
    /// the Cuda stream `v_stream`.
    pub fn cuda_memcpy_async_to_gpu(
        dest: *mut c_void,
        src: *const c_void,
        size: u64,
        stream: *mut c_void,
        gpu_index: u32,
    );

    /// Copy `size` memory asynchronously from `src` to `dest` on the same GPU `gpu_index` using
    /// the Cuda stream `v_stream`.
    pub fn cuda_memcpy_async_gpu_to_gpu(
        dest: *mut c_void,
        src: *const c_void,
        size: u64,
        stream: *mut c_void,
        gpu_index: u32,
    );

    /// Copy `size` memory asynchronously from `src` on CPU to `dest` on GPU `gpu_index` using
    /// the Cuda stream `v_stream`.
    pub fn cuda_memset_async(
        dest: *mut c_void,
        value: u64,
        size: u64,
        stream: *mut c_void,
        gpu_index: u32,
    );

    /// Get the total number of Nvidia GPUs detected on the platform
    pub fn cuda_get_number_of_gpus() -> i32;

    /// Synchronize all streams on GPU `gpu_index`
    pub fn cuda_synchronize_device(gpu_index: u32);

    /// Synchronize Cuda stream
    pub fn cuda_synchronize_stream(stream: *mut c_void, gpu_index: u32);

    /// Free memory for pointer `ptr` on GPU `gpu_index` asynchronously, using stream `v_stream`
    pub fn cuda_drop_async(ptr: *mut c_void, stream: *mut c_void, gpu_index: u32);

    /// Free memory for pointer `ptr` on GPU `gpu_index` synchronously
    pub fn cuda_drop(ptr: *mut c_void, gpu_index: u32);

    /// Get the maximum amount of shared memory on GPU `gpu_index`
    pub fn cuda_get_max_shared_memory(gpu_index: u32) -> i32;

    pub fn cuda_setup_multi_gpu() -> i32;

    /// Copy a bootstrap key `src` represented with 64 bits in the standard domain from the CPU to
    /// the GPU `gpu_index` using the stream `v_stream`, and convert it to the Fourier domain on the
    /// GPU. The resulting bootstrap key `dest` on the GPU is an array of f64 values.
    pub fn cuda_convert_lwe_programmable_bootstrap_key_64(
        stream: *mut c_void,
        gpu_index: u32,
        dest: *mut c_void,
        src: *const c_void,
        input_lwe_dim: u32,
        glwe_dim: u32,
        level_count: u32,
        polynomial_size: u32,
    );

    /// Copy a multi-bit bootstrap key `src` represented with 64 bits in the standard domain from
    /// the CPU to the GPU `gpu_index` using the stream `v_stream`. The resulting bootstrap key
    /// `dest` on the GPU is an array of uint64_t values.
    pub fn cuda_convert_lwe_multi_bit_programmable_bootstrap_key_64(
        stream: *mut c_void,
        gpu_index: u32,
        dest: *mut c_void,
        src: *const c_void,
        input_lwe_dim: u32,
        glwe_dim: u32,
        level_count: u32,
        polynomial_size: u32,
        grouping_factor: u32,
    );

    /// Copy `number_of_cts` LWE ciphertext represented with 64 bits in the standard domain from the
    /// CPU to the GPU `gpu_index` using the stream `v_stream`. All ciphertexts must be
    /// concatenated.
    pub fn cuda_convert_lwe_ciphertext_vector_to_gpu_64(
        stream: *mut c_void,
        gpu_index: u32,
        dest: *mut c_void,
        src: *mut c_void,
        number_of_cts: u32,
        lwe_dimension: u32,
    );

    /// Copy `number_of_cts` LWE ciphertext represented with 64 bits in the standard domain from the
    /// GPU to the CPU `gpu_index` using the stream `v_stream`. All ciphertexts must be
    /// concatenated.
    pub fn cuda_convert_lwe_ciphertext_vector_to_cpu_64(
        stream: *mut c_void,
        gpu_index: u32,
        dest: *mut c_void,
        src: *mut c_void,
        number_of_cts: u32,
        lwe_dimension: u32,
    );

    /// This scratch function allocates the necessary amount of data on the GPU for
    /// the low latency PBS on 64-bit inputs, into `pbs_buffer`. It also configures SM
    /// options on the GPU in case FULLSM or PARTIALSM mode are going to be used.
    pub fn scratch_cuda_programmable_bootstrap_64(
        stream: *mut c_void,
        gpu_index: u32,
        pbs_buffer: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        level_count: u32,
        input_lwe_ciphertext_count: u32,
        max_shared_memory: u32,
        allocate_gpu_memory: bool,
    );

    /// Perform bootstrapping on a batch of input u64 LWE ciphertexts.
    ///
    /// - `v_stream` is a void pointer to the Cuda stream to be used in the kernel launch
    /// - `gpu_index` is the index of the GPU to be used in the kernel launch
    /// - `lwe_array_out`: output batch of num_samples bootstrapped ciphertexts c =
    /// (a0,..an-1,b) where n is the LWE dimension
    /// - `lut_vector`: should hold as many test vectors of size polynomial_size
    /// as there are input ciphertexts, but actually holds
    /// `num_lut_vectors` vectors to reduce memory usage
    /// - `lut_vector_indexes`: stores the index corresponding to
    /// which test vector to use for each sample in
    /// `lut_vector`
    /// - `lwe_array_in`: input batch of num_samples LWE ciphertexts, containing n
    /// mask values + 1 body value
    /// - `bootstrapping_key`: GGSW encryption of the LWE secret key sk1
    /// under secret key sk2.
    /// bsk = Z + sk1 H
    /// where H is the gadget matrix and Z is a matrix (k+1).l
    /// containing GLWE encryptions of 0 under sk2.
    /// bsk is thus a tensor of size (k+1)^2.l.N.n
    /// where l is the number of decomposition levels and
    /// k is the GLWE dimension, N is the polynomial size for
    /// GLWE. The polynomial size for GLWE and the test vector
    /// are the same because they have to be in the same ring
    /// to be multiplied.
    /// - `pbs_buffer`: a preallocated buffer to store temporary results
    /// - `lwe_dimension`: size of the Torus vector used to encrypt the input
    /// LWE ciphertexts - referred to as n above (~ 600)
    /// - `glwe_dimension`: size of the polynomial vector used to encrypt the LUT
    /// GLWE ciphertexts - referred to as k above. Only the value 1 is supported for this parameter.
    /// - `polynomial_size`: size of the test polynomial (test vector) and size of the
    /// GLWE polynomial (~1024)
    /// - `base_log`: log base used for the gadget matrix - B = 2^base_log (~8)
    /// - `level_count`: number of decomposition levels in the gadget matrix (~4)
    /// - `num_samples`: number of encrypted input messages
    /// - `num_lut_vectors`: parameter to set the actual number of test vectors to be
    /// used
    /// - `lwe_idx`: the index of the LWE input to consider for the GPU of index gpu_index. In
    /// case of multi-GPU computing, it is assumed that only a part of the input LWE array is
    /// copied to each GPU, but the whole LUT array is copied (because the case when the number
    /// of LUTs is smaller than the number of input LWEs is not trivial to take into account in
    /// the data repartition on the GPUs). `lwe_idx` is used to determine which LUT to consider
    /// for a given LWE input in the LUT array `lut_vector`.
    ///  - `max_shared_memory` maximum amount of shared memory to be used inside
    /// device functions
    ///
    /// This function calls a wrapper to a device kernel that performs the
    /// bootstrapping:
    ///   - the kernel is templatized based on integer discretization and
    /// polynomial degree
    ///   - num_samples * level_count * (glwe_dimension + 1) blocks of threads are launched, where
    /// each thread is going to handle one or more polynomial coefficients at each stage,
    /// for a given level of decomposition, either for the LUT mask or its body:
    ///     - perform the blind rotation
    ///     - round the result
    ///     - get the decomposition for the current level
    ///     - switch to the FFT domain
    ///     - multiply with the bootstrapping key
    ///     - come back to the coefficients representation
    ///   - between each stage a synchronization of the threads is necessary (some
    /// synchronizations
    /// happen at the block level, some happen between blocks, using cooperative groups).
    ///   - in case the device has enough shared memory, temporary arrays used for
    /// the different stages (accumulators) are stored into the shared memory
    ///   - the accumulators serve to combine the results for all decomposition
    /// levels
    ///   - the constant memory (64K) is used for storing the roots of identity
    /// values for the FFT
    pub fn cuda_programmable_bootstrap_lwe_ciphertext_vector_64(
        stream: *mut c_void,
        gpu_index: u32,
        lwe_array_out: *mut c_void,
        lwe_output_indexes: *const c_void,
        lut_vector: *const c_void,
        lut_vector_indexes: *const c_void,
        lwe_array_in: *const c_void,
        lwe_input_indexes: *const c_void,
        bootstrapping_key: *const c_void,
        pbs_buffer: *mut i8,
        lwe_dimension: u32,
        glwe_dimension: u32,
        polynomial_size: u32,
        base_log: u32,
        level: u32,
        num_samples: u32,
        num_lut_vectors: u32,
        lwe_idx: u32,
        max_shared_memory: u32,
        gpu_offset: u32,
    );

    /// This cleanup function frees the data for the low latency PBS on GPU
    /// contained in pbs_buffer for 32 or 64-bit inputs.
    pub fn cleanup_cuda_programmable_bootstrap(
        stream: *mut c_void,
        gpu_index: u32,
        pbs_buffer: *mut *mut i8,
    );

    /// This scratch function allocates the necessary amount of data on the GPU for
    /// the multi-bit PBS on 64-bit inputs into `pbs_buffer`.
    pub fn scratch_cuda_multi_bit_programmable_bootstrap_64(
        stream: *mut c_void,
        gpu_index: u32,
        pbs_buffer: *mut *mut i8,
        lwe_dimension: u32,
        glwe_dimension: u32,
        polynomial_size: u32,
        level_count: u32,
        grouping_factor: u32,
        input_lwe_ciphertext_count: u32,
        max_shared_memory: u32,
        allocate_gpu_memory: bool,
        lwe_chunk_size: u32,
    );

    /// Perform bootstrapping on a batch of input u64 LWE ciphertexts using the multi-bit algorithm.
    ///
    /// - `v_stream` is a void pointer to the Cuda stream to be used in the kernel launch
    /// - `gpu_index` is the index of the GPU to be used in the kernel launch
    /// - `lwe_array_out`: output batch of num_samples bootstrapped ciphertexts c =
    /// (a0,..an-1,b) where n is the LWE dimension
    /// - `lut_vector`: should hold as many test vectors of size polynomial_size
    /// as there are input ciphertexts, but actually holds
    /// `num_lut_vectors` vectors to reduce memory usage
    /// - `lut_vector_indexes`: stores the index corresponding to
    /// which test vector to use for each sample in
    /// `lut_vector`
    /// - `lwe_array_in`: input batch of num_samples LWE ciphertexts, containing n
    /// mask values + 1 body value
    /// - `bootstrapping_key`: GGSW encryption of elements of the LWE secret key as in the
    /// classical PBS, but this time we follow Zhou's trick and encrypt combinations of elements
    /// of the key
    /// - `pbs_buffer`: a preallocated buffer to store temporary results
    /// - `lwe_dimension`: size of the Torus vector used to encrypt the input
    /// LWE ciphertexts - referred to as n above (~ 600)
    /// - `glwe_dimension`: size of the polynomial vector used to encrypt the LUT
    /// GLWE ciphertexts - referred to as k above. Only the value 1 is supported for this parameter.
    /// - `polynomial_size`: size of the test polynomial (test vector) and size of the
    /// GLWE polynomial (~1024)
    /// - `grouping_factor`: number of elements of the LWE secret key combined per GGSW of the
    /// bootstrap key
    /// - `base_log`: log base used for the gadget matrix - B = 2^base_log (~8)
    /// - `level_count`: number of decomposition levels in the gadget matrix (~4)
    /// - `num_samples`: number of encrypted input messages
    /// - `num_lut_vectors`: parameter to set the actual number of test vectors to be
    /// used
    /// - `lwe_idx`: the index of the LWE input to consider for the GPU of index gpu_index. In
    /// case of multi-GPU computing, it is assumed that only a part of the input LWE array is
    /// copied to each GPU, but the whole LUT array is copied (because the case when the number
    /// of LUTs is smaller than the number of input LWEs is not trivial to take into account in
    /// the data repartition on the GPUs). `lwe_idx` is used to determine which LUT to consider
    /// for a given LWE input in the LUT array `lut_vector`.
    ///  - `max_shared_memory` maximum amount of shared memory to be used inside
    /// device functions
    pub fn cuda_multi_bit_programmable_bootstrap_lwe_ciphertext_vector_64(
        stream: *mut c_void,
        gpu_index: u32,
        lwe_array_out: *mut c_void,
        lwe_output_indexes: *const c_void,
        lut_vector: *const c_void,
        lut_vector_indexes: *const c_void,
        lwe_array_in: *const c_void,
        lwe_input_indexes: *const c_void,
        bootstrapping_key: *const c_void,
        pbs_buffer: *mut i8,
        lwe_dimension: u32,
        glwe_dimension: u32,
        polynomial_size: u32,
        grouping_factor: u32,
        base_log: u32,
        level: u32,
        num_samples: u32,
        num_lut_vectors: u32,
        lwe_idx: u32,
        max_shared_memory: u32,
        gpu_offset: u32,
        lwe_chunk_size: u32,
    );

    /// This cleanup function frees the data for the multi-bit PBS on GPU
    /// contained in pbs_buffer for 64-bit inputs.
    pub fn cleanup_cuda_multi_bit_programmable_bootstrap(
        stream: *mut c_void,
        gpu_index: u32,
        pbs_buffer: *mut *mut i8,
    );

    /// Perform keyswitch on a batch of 64 bits input LWE ciphertexts.
    ///
    /// - `v_stream` is a void pointer to the Cuda stream to be used in the kernel launch
    /// - `gpu_index` is the index of the GPU to be used in the kernel launch
    /// - `lwe_array_out`: output batch of num_samples keyswitched ciphertexts c =
    /// (a0,..an-1,b) where n is the output LWE dimension (lwe_dimension_out)
    /// - `lwe_array_in`: input batch of num_samples LWE ciphertexts, containing lwe_dimension_in
    /// mask values + 1 body value
    /// - `ksk`: the keyswitch key to be used in the operation
    /// - `base_log`: the log of the base used in the decomposition (should be the one used to
    /// create the ksk).
    /// - `level_count`: the number of levels used in the decomposition (should be the one used to
    /// create the ksk).
    /// - `num_samples`: the number of input and output LWE ciphertexts.
    ///
    /// This function calls a wrapper to a device kernel that performs the keyswitch.
    /// `num_samples` blocks of threads are launched
    pub fn cuda_keyswitch_lwe_ciphertext_vector_64(
        stream: *mut c_void,
        gpu_index: u32,
        lwe_array_out: *mut c_void,
        lwe_output_indexes: *const c_void,
        lwe_array_in: *const c_void,
        lwe_input_indexes: *const c_void,
        keyswitch_key: *const c_void,
        input_lwe_dimension: u32,
        output_lwe_dimension: u32,
        base_log: u32,
        level_count: u32,
        num_samples: u32,
        gpu_offset: u32,
    );

    /// Perform the negation of a u64 input LWE ciphertext vector.
    /// - `v_stream` is a void pointer to the Cuda stream to be used in the kernel launch
    /// - `gpu_index` is the index of the GPU to be used in the kernel launch
    /// - `lwe_array_out` is an array of size
    /// `(input_lwe_dimension + 1) * input_lwe_ciphertext_count` that should have been allocated on
    /// the GPU before calling this function, and that will hold the result of the computation.
    /// - `lwe_array_in` is the LWE ciphertext vector used as input, it should have been
    /// allocated and initialized before calling this function. It has the same size as the output
    /// array.
    /// - `input_lwe_dimension` is the number of mask elements in the two input and in the output
    /// ciphertext vectors
    /// - `input_lwe_ciphertext_count` is the number of ciphertexts contained in each input LWE
    /// ciphertext vector, as well as in the output.
    ///
    /// Each element (mask element or body) of the input LWE ciphertext vector is negated.
    /// The result is stored in the output LWE ciphertext vector. The input LWE ciphertext vector
    /// is left unchanged. This function is a wrapper to a device function that performs the
    /// operation on the GPU.
    pub fn cuda_negate_lwe_ciphertext_vector_64(
        stream: *mut c_void,
        gpu_index: u32,
        lwe_array_out: *mut c_void,
        lwe_array_in: *const c_void,
        input_lwe_dimension: u32,
        input_lwe_ciphertext_count: u32,
    );

    pub fn cuda_negate_integer_radix_ciphertext_64_inplace(
        streams: *const *mut c_void,
        gpu_index: *const u32,
        gpu_indexes: u32,
        lwe_array: *mut c_void,
        lwe_dimension: u32,
        lwe_ciphertext_count: u32,
        message_modulus: u32,
        carry_modulus: u32,
    );

    /// Perform the addition of two u64 input LWE ciphertext vectors.
    /// - `v_stream` is a void pointer to the Cuda stream to be used in the kernel launch
    /// - `gpu_index` is the index of the GPU to be used in the kernel launch
    /// - `lwe_array_out` is an array of size
    /// `(input_lwe_dimension + 1) * input_lwe_ciphertext_count` that should have been allocated on
    /// the GPU before calling this function, and that will hold the result of the computation.
    /// - `lwe_array_in_1` is the first LWE ciphertext vector used as input, it should have been
    /// allocated and initialized before calling this function. It has the same size as the output
    /// array.
    /// - `lwe_array_in_2` is the second LWE ciphertext vector used as input, it should have been
    /// allocated and initialized before calling this function. It has the same size as the output
    /// array.
    /// - `input_lwe_dimension` is the number of mask elements in the two input and in the output
    /// ciphertext vectors
    /// - `input_lwe_ciphertext_count` is the number of ciphertexts contained in each input LWE
    /// ciphertext vector, as well as in the output.
    ///
    /// Each element (mask element or body) of the input LWE ciphertext vector 1 is added to the
    /// corresponding element in the input LWE ciphertext 2. The result is stored in the output LWE
    /// ciphertext vector. The two input LWE ciphertext vectors are left unchanged. This function is
    /// a wrapper to a device function that performs the operation on the GPU.
    pub fn cuda_add_lwe_ciphertext_vector_64(
        stream: *mut c_void,
        gpu_index: u32,
        lwe_array_out: *mut c_void,
        lwe_array_in_1: *const c_void,
        lwe_array_in_2: *const c_void,
        input_lwe_dimension: u32,
        input_lwe_ciphertext_count: u32,
    );

    /// Perform the addition of a u64 input LWE ciphertext vector with a u64 input plaintext vector.
    /// - `v_stream` is a void pointer to the Cuda stream to be used in the kernel launch
    /// - `gpu_index` is the index of the GPU to be used in the kernel launch
    /// - `lwe_array_out` is an array of size
    /// `(input_lwe_dimension + 1) * input_lwe_ciphertext_count` that should have been allocated
    /// on the GPU before calling this function, and that will hold the result of the computation.
    /// - `lwe_array_in` is the LWE ciphertext vector used as input, it should have been
    /// allocated and initialized before calling this function. It has the same size as the output
    /// array.
    /// - `plaintext_array_in` is the plaintext vector used as input, it should have been
    /// allocated and initialized before calling this function. It should be of size
    /// `input_lwe_ciphertext_count`.
    /// - `input_lwe_dimension` is the number of mask elements in the input and output LWE
    /// ciphertext vectors
    /// - `input_lwe_ciphertext_count` is the number of ciphertexts contained in the input LWE
    /// ciphertext vector, as well as in the output. It is also the number of plaintexts in the
    /// input plaintext vector.
    ///
    /// Each plaintext of the input plaintext vector is added to the body of the corresponding LWE
    /// ciphertext in the LWE ciphertext vector. The result of the operation is stored in the output
    /// LWE ciphertext vector. The two input vectors are unchanged. This function is a
    /// wrapper to a device function that performs the operation on the GPU.
    pub fn cuda_add_lwe_ciphertext_vector_plaintext_vector_64(
        stream: *mut c_void,
        gpu_index: u32,
        lwe_array_out: *mut c_void,
        lwe_array_in: *const c_void,
        plaintext_array_in: *const c_void,
        input_lwe_dimension: u32,
        input_lwe_ciphertext_count: u32,
    );

    /// Perform the multiplication of a u64 input LWE ciphertext vector with a u64 input cleartext
    /// vector.
    /// - `v_stream` is a void pointer to the Cuda stream to be used in the kernel launch
    /// - `gpu_index` is the index of the GPU to be used in the kernel launch
    /// - `lwe_array_out` is an array of size
    /// `(input_lwe_dimension + 1) * input_lwe_ciphertext_count` that should have been allocated
    /// on the GPU before calling this function, and that will hold the result of the computation.
    /// - `lwe_array_in` is the LWE ciphertext vector used as input, it should have been
    /// allocated and initialized before calling this function. It has the same size as the output
    /// array.
    /// - `cleartext_array_in` is the cleartext vector used as input, it should have been
    /// allocated and initialized before calling this function. It should be of size
    /// `input_lwe_ciphertext_count`.
    /// - `input_lwe_dimension` is the number of mask elements in the input and output LWE
    /// ciphertext vectors
    /// - `input_lwe_ciphertext_count` is the number of ciphertexts contained in the input LWE
    /// ciphertext vector, as well as in the output. It is also the number of cleartexts in the
    /// input cleartext vector.
    ///
    /// Each cleartext of the input cleartext vector is multiplied to the mask and body of the
    /// corresponding LWE ciphertext in the LWE ciphertext vector.
    /// The result of the operation is stored in the output
    /// LWE ciphertext vector. The two input vectors are unchanged. This function is a
    /// wrapper to a device function that performs the operation on the GPU.
    pub fn cuda_mult_lwe_ciphertext_vector_cleartext_vector_64(
        stream: *mut c_void,
        gpu_index: u32,
        lwe_array_out: *mut c_void,
        lwe_array_in: *const c_void,
        cleartext_array_in: *const c_void,
        input_lwe_dimension: u32,
        input_lwe_ciphertext_count: u32,
    );

    pub fn scratch_cuda_integer_mult_radix_ciphertext_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        message_modulus: u32,
        carry_modulus: u32,
        glwe_dimension: u32,
        lwe_dimension: u32,
        polynomial_size: u32,
        pbs_base_log: u32,
        pbs_level: u32,
        ks_base_log: u32,
        ks_level: u32,
        grouping_factor: u32,
        num_blocks: u32,
        pbs_type: u32,
        max_shared_memory: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_integer_mult_radix_ciphertext_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe_out: *mut c_void,
        radix_lwe_left: *const c_void,
        radix_lwe_right: *const c_void,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        mem_ptr: *mut i8,
        polynomial_size: u32,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_integer_mult(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn cuda_scalar_addition_integer_radix_ciphertext_64_inplace(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        lwe_array: *mut c_void,
        scalar_input: *const c_void,
        lwe_dimension: u32,
        lwe_ciphertext_count: u32,
        message_modulus: u32,
        carry_modulus: u32,
    );

    pub fn scratch_cuda_integer_scalar_mul_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_scalar_multiplication_integer_radix_ciphertext_64_inplace(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        lwe_array: *mut c_void,
        decomposed_scalar: *const u64,
        has_at_least_one_set: *const u64,
        mem: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        lwe_dimension: u32,
        polynomial_size: u32,
        message_modulus: u32,
        num_blocks: u32,
        num_scalars: u32,
    );

    pub fn cleanup_cuda_integer_radix_scalar_mul(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_integer_radix_bitop_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        op_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_bitop_integer_radix_ciphertext_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe_out: *mut c_void,
        radix_lwe_left: *const c_void,
        radix_lwe_right: *const c_void,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cuda_scalar_bitop_integer_radix_ciphertext_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe_output: *mut c_void,
        radix_lwe_input: *mut c_void,
        clear_blocks: *const c_void,
        num_clear_blocks: u32,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
        op_type: u32,
    );

    pub fn cleanup_cuda_integer_bitop(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_integer_radix_comparison_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        op_type: u32,
        is_signed: bool,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_comparison_integer_radix_ciphertext_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe_out: *mut c_void,
        radix_lwe_left: *const c_void,
        radix_lwe_right: *const c_void,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_integer_comparison(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn cuda_scalar_comparison_integer_radix_ciphertext_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe_out: *mut c_void,
        radix_lwe_in: *const c_void,
        scalar_blocks: *const c_void,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
        num_scalar_blocks: u32,
    );

    pub fn scratch_cuda_full_propagation_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        lwe_dimension: u32,
        glwe_dimension: u32,
        polynomial_size: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_full_propagation_64_inplace(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe_right: *mut c_void,
        mem_ptr: *mut i8,
        ksks: *const *mut c_void,
        bsks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_full_propagation(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_apply_univariate_lut_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        input_lut: *const c_void,
        lwe_dimension: u32,
        glwe_dimension: u32,
        polynomial_size: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_apply_univariate_lut_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        output_radix_lwe: *mut c_void,
        input_radix_lwe: *const c_void,
        mem_ptr: *mut i8,
        ksks: *const *mut c_void,
        bsks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_apply_univariate_lut_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_apply_bivariate_lut_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        input_lut: *const c_void,
        lwe_dimension: u32,
        glwe_dimension: u32,
        polynomial_size: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_apply_bivariate_lut_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        output_radix_lwe: *mut c_void,
        input_radix_lwe_1: *const c_void,
        input_radix_lwe_2: *const c_void,
        mem_ptr: *mut i8,
        ksks: *const *mut c_void,
        bsks: *const *mut c_void,
        num_blocks: u32,
        shift: u32,
    );

    pub fn cleanup_cuda_apply_bivariate_lut_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_integer_radix_logical_scalar_shift_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        shift_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_integer_radix_logical_scalar_shift_kb_64_inplace(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe: *mut c_void,
        shift: u32,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn scratch_cuda_integer_radix_arithmetic_scalar_shift_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        shift_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_integer_radix_arithmetic_scalar_shift_kb_64_inplace(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe: *mut c_void,
        shift: u32,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_integer_radix_logical_scalar_shift(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn cleanup_cuda_integer_radix_arithmetic_scalar_shift(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_integer_radix_shift_and_rotate_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        shift_type: u32,
        is_signed: bool,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_integer_radix_shift_and_rotate_kb_64_inplace(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe: *mut c_void,
        radix_shift: *const c_void,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_integer_radix_shift_and_rotate(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_integer_radix_cmux_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_cmux_integer_radix_ciphertext_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        lwe_array_out: *mut c_void,
        lwe_condition: *const c_void,
        lwe_array_true: *const c_void,
        lwe_array_false: *const c_void,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_integer_radix_cmux(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_integer_radix_scalar_rotate_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        shift_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_integer_radix_scalar_rotate_kb_64_inplace(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe: *mut c_void,
        n: u32,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_integer_radix_scalar_rotate(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_propagate_single_carry_kb_64_inplace(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_propagate_single_carry_kb_64_inplace(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe: *mut c_void,
        carry_out: *mut c_void,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_propagate_single_carry(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_integer_radix_sum_ciphertexts_vec_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks_in_radix: u32,
        max_num_radix_in_vec: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_integer_radix_sum_ciphertexts_vec_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe_out: *mut c_void,
        radix_lwe_vec: *mut c_void,
        num_radix_in_vec: u32,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks_in_radix: u32,
    );

    pub fn cleanup_cuda_integer_radix_sum_ciphertexts_vec(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_integer_radix_overflowing_sub_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_integer_radix_overflowing_sub_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        radix_lwe_out: *mut c_void,
        radix_lwe_overflowed: *mut c_void,
        radix_lwe_left: *const c_void,
        radix_lwe_right: *const c_void,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_integer_radix_overflowing_sub(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

    pub fn scratch_cuda_integer_div_rem_radix_ciphertext_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
        glwe_dimension: u32,
        polynomial_size: u32,
        big_lwe_dimension: u32,
        small_lwe_dimension: u32,
        ks_level: u32,
        ks_base_log: u32,
        pbs_level: u32,
        pbs_base_log: u32,
        grouping_factor: u32,
        num_blocks: u32,
        message_modulus: u32,
        carry_modulus: u32,
        pbs_type: u32,
        allocate_gpu_memory: bool,
    );

    pub fn cuda_integer_div_rem_radix_ciphertext_kb_64(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        quotient: *mut c_void,
        remainder: *mut c_void,
        numerator: *const c_void,
        divisor: *const c_void,
        mem_ptr: *mut i8,
        bsks: *const *mut c_void,
        ksks: *const *mut c_void,
        num_blocks: u32,
    );

    pub fn cleanup_cuda_integer_div_rem(
        streams: *const *mut c_void,
        gpu_indexes: *const u32,
        gpu_count: u32,
        mem_ptr: *mut *mut i8,
    );

} // extern "C"