tf_binding_rs/
fasta.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use crate::error::MotifError;
use polars::prelude::*;
use std::collections::HashSet;
use std::fs::File;
use std::io::{BufRead, BufReader, Write};

/// Reads sequences from a FASTA format file and converts them into a Polars DataFrame.
///
/// # Arguments
/// * `filename` - Path to the FASTA file to read
///
/// # Returns
/// * `Result<DataFrame>` - A DataFrame with two columns:
///   - "label": The sequence identifiers (without '>' prefix)
///   - "sequence": The corresponding DNA/RNA sequences in uppercase
///
/// # Errors
/// * Returns `MotifError::InvalidFileFormat` if no sequences are found
/// * Returns `MotifError::DataError` if DataFrame creation fails
/// * Returns `std::io::Error` for file reading issues
pub fn read_fasta(filename: &str) -> Result<DataFrame, MotifError> {
    let mut sequences: Vec<(String, String)> = Vec::new();
    let file = File::open(filename)?;
    let reader = BufReader::new(file);

    let mut current_header = String::new();
    let mut current_sequence = String::new();

    for line in reader.lines() {
        let line = line?;
        let line = line.trim();

        if line.starts_with('>') {
            if !current_header.is_empty() {
                sequences.push((current_header, current_sequence.to_uppercase()));
                current_sequence.clear();
            }
            current_header = line[1..].to_string();
        } else if !line.is_empty() {
            current_sequence.push_str(line);
        }
    }

    if !current_header.is_empty() {
        sequences.push((current_header, current_sequence.to_uppercase()));
    }

    if sequences.is_empty() {
        return Err(MotifError::InvalidFileFormat(
            "No sequences found".to_string(),
        ));
    }

    let (labels, sequences): (Vec<String>, Vec<String>) = sequences.into_iter().unzip();
    let df = DataFrame::new(vec![
        Column::new("label".into(), labels),
        Column::new("sequence".into(), sequences),
    ])
    .map_err(|e| MotifError::DataError(e.to_string()))?;

    Ok(df)
}

/// Writes sequences from a Polars DataFrame to a FASTA format file.
///
/// # Arguments
/// * `df` - DataFrame containing sequences with "label" and "sequence" columns
/// * `filename` - Path where the FASTA file should be written
///
/// # Returns
/// * `Result<()>` - Unit type if successful
///
/// # Errors
/// * Returns `MotifError::DataError` if required columns are missing
/// * Returns `MotifError::Io` for file writing issues
pub fn write_fasta(df: &DataFrame, filename: &str) -> Result<(), MotifError> {
    let labels = df
        .column("label")
        .map_err(|e| MotifError::DataError(e.to_string()))?
        .str()
        .unwrap();
    let sequences = df
        .column("sequence")
        .map_err(|e| MotifError::DataError(e.to_string()))?
        .str()
        .unwrap();

    let mut file = File::create(filename).map_err(MotifError::Io)?;

    for idx in 0..df.height() {
        let label = labels.get(idx).unwrap();
        let sequence = sequences.get(idx).unwrap();

        writeln!(file, ">{}", label).map_err(MotifError::Io)?;
        writeln!(file, "{}", sequence).map_err(MotifError::Io)?;
    }

    Ok(())
}

/// Generates the reverse complement of a DNA sequence.
///
/// # Arguments
/// * `sequence` - Input DNA sequence string
///
/// # Returns
/// * `Result<String>` - The reverse complement sequence where:
///   - A ↔ T
///   - C ↔ G
///
/// # Errors
/// * Returns `MotifError::InvalidInput` if sequence contains invalid nucleotides
pub fn reverse_complement(sequence: &str) -> Result<String, MotifError> {
    static COMPLEMENT: phf::Map<char, char> = phf::phf_map! {
        'A' => 'T',
        'T' => 'A',
        'C' => 'G',
        'G' => 'C',
    };

    sequence
        .chars()
        .rev()
        .map(|c| {
            COMPLEMENT
                .get(&c)
                .ok_or_else(|| MotifError::InvalidInput(format!("Invalid nucleotide: {}", c)))
        })
        .collect()
}

/// Calculates the GC content for each sequence in the input DataFrame.
///
/// # Arguments
/// * `df` - DataFrame containing sequences with "label" and "sequence" columns
///
/// # Returns
/// * `Result<DataFrame>` - A DataFrame with:
///   - Original labels
///   - "gc_content": Fraction of G and C bases in each sequence
///
/// # Errors
/// * Returns `MotifError::DataError` if required columns are missing or DataFrame creation fails
pub fn gc_content(df: &DataFrame) -> Result<DataFrame, MotifError> {
    let sequences = df
        .column("sequence")
        .map_err(|e| MotifError::DataError(e.to_string()))?
        .str()
        .unwrap();

    let gc_content: Vec<f64> = sequences
        .into_iter()
        .map(|seq| {
            let seq = seq.unwrap();
            let gc_count = seq.chars().filter(|&c| c == 'G' || c == 'C').count() as f64;
            gc_count / seq.len() as f64
        })
        .collect();

    let labels = df
        .column("label")
        .map_err(|e| MotifError::DataError(e.to_string()))?;

    let new_df = DataFrame::new(vec![
        labels.clone(),
        Column::new("gc_content".into(), gc_content),
    ])
    .map_err(|e| MotifError::DataError(e.to_string()))?;

    Ok(new_df)
}

/// Identifies sequences containing specified restriction sites.
///
/// # Arguments
/// * `df` - DataFrame containing sequences with "label" and "sequence" columns
/// * `restrictions` - Slice of restriction site patterns to search for
///
/// # Returns
/// * `Result<DataFrame>` - A DataFrame with:
///   - Original labels
///   - "has_restriction_sites": Boolean indicating if any restriction site was found
///
/// # Errors
/// * Returns `MotifError::DataError` if required columns are missing or DataFrame creation fails
pub fn has_restriction_sites(
    df: &DataFrame,
    restrictions: &[&str],
) -> Result<DataFrame, MotifError> {
    let restrictions_set: HashSet<String> = restrictions.iter().map(|r| r.to_string()).collect();

    let sequences = df
        .column("sequence")
        .map_err(|e| MotifError::DataError(e.to_string()))?
        .str()
        .unwrap();

    let mask: Vec<bool> = sequences
        .into_iter()
        .map(|seq| {
            let seq = seq.unwrap();
            restrictions_set.iter().any(|r| seq.contains(r))
        })
        .collect();

    let labels = df
        .column("label")
        .map_err(|e| MotifError::DataError(e.to_string()))?;

    let new_df = DataFrame::new(vec![
        labels.clone(),
        Column::new("has_restriction_sites".into(), mask),
    ])
    .map_err(|e| MotifError::DataError(e.to_string()))?;

    Ok(new_df)
}