1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*!
# text-splitter
[](https://docs.rs/text-splitter/)
[](https://github.com/benbrandt/text-splitter/blob/main/LICENSE.txt)
[](https://crates.io/crates/text-splitter)
[](https://codecov.io/github/benbrandt/text-splitter)
- **Rust Crate**: [text-splitter](https://crates.io/crates/text-splitter)
- **Python Bindings**: [semantic-text-splitter](https://pypi.org/project/semantic-text-splitter/) (unfortunately couldn't acquire the same package name)
Large language models (LLMs) can be used for many tasks, but often have a limited context size that can be smaller than documents you might want to use. To use documents of larger length, you often have to split your text into chunks to fit within this context size.
This crate provides methods for splitting longer pieces of text into smaller chunks, aiming to maximize a desired chunk size, but still splitting at semantically sensible boundaries whenever possible.
## Get Started
### By Number of Characters
```rust
use text_splitter::{Characters, TextSplitter};
// Maximum number of characters in a chunk
let max_characters = 1000;
// Default implementation uses character count for chunk size
let splitter = TextSplitter::default()
// Optionally can also have the splitter trim whitespace for you
.with_trim_chunks(true);
let chunks = splitter.chunks("your document text", max_characters);
```
### With Huggingface Tokenizer
Requires the `tokenizers` feature to be activated.
```rust
use text_splitter::TextSplitter;
// Can also use anything else that implements the ChunkSizer
// trait from the text_splitter crate.
use tokenizers::Tokenizer;
let tokenizer = Tokenizer::from_pretrained("bert-base-cased", None).unwrap();
let max_tokens = 1000;
let splitter = TextSplitter::new(tokenizer)
// Optionally can also have the splitter trim whitespace for you
.with_trim_chunks(true);
let chunks = splitter.chunks("your document text", max_tokens);
```
### With Tiktoken Tokenizer
Requires the `tiktoken-rs` feature to be activated.
```rust
use text_splitter::TextSplitter;
// Can also use anything else that implements the ChunkSizer
// trait from the text_splitter crate.
use tiktoken_rs::cl100k_base;
let tokenizer = cl100k_base().unwrap();
let max_tokens = 1000;
let splitter = TextSplitter::new(tokenizer)
// Optionally can also have the splitter trim whitespace for you
.with_trim_chunks(true);
let chunks = splitter.chunks("your document text", max_tokens);
```
### Using a Range for Chunk Capacity
You also have the option of specifying your chunk capacity as a range.
Once a chunk has reached a length that falls within the range it will be returned.
It is always possible that a chunk may be returned that is less than the `start` value, as adding the next piece of text may have made it larger than the `end` capacity.
```rust
use text_splitter::{Characters, TextSplitter};
// Maximum number of characters in a chunk. Will fill up the
// chunk until it is somewhere in this range.
let max_characters = 500..2000;
// Default implementation uses character count for chunk size
let splitter = TextSplitter::default().with_trim_chunks(true);
let chunks = splitter.chunks("your document text", max_characters);
```
## Method
To preserve as much semantic meaning within a chunk as possible, a recursive approach is used, starting at larger semantic units and, if that is too large, breaking it up into the next largest unit. Here is an example of the steps used:
1. Split the text by a given level
2. For each section, does it fit within the chunk size?
- Yes. Merge as many of these neighboring sections into a chunk as possible to maximize chunk length.
- No. Split by the next level and repeat.
The boundaries used to split the text if using the top-level `chunks` method, in descending length:
1. Descending sequence length of newlines. (Newline is `\r\n`, `\n`, or `\r`) Each unique length of consecutive newline sequences is treated as its own semantic level.
2. [Unicode Sentence Boundaries](https://www.unicode.org/reports/tr29/#Sentence_Boundaries)
3. [Unicode Word Boundaries](https://www.unicode.org/reports/tr29/#Word_Boundaries)
4. [Unicode Grapheme Cluster Boundaries](https://www.unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries)
5. Characters
Splitting doesn't occur below the character level, otherwise you could get partial bytes of a char, which may not be a valid unicode str.
_Note on sentences:_ There are lots of methods of determining sentence breaks, all to varying degrees of accuracy, and many requiring ML models to do so. Rather than trying to find the perfect sentence breaks, we rely on unicode method of sentence boundaries, which in most cases is good enough for finding a decent semantic breaking point if a paragraph is too large, and avoids the performance penalties of many other methods.
## Inspiration
This crate was inspired by [LangChain's TextSplitter](https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/recursive_text_splitter.html). But, looking into the implementation, there was potential for better performance as well as better semantic chunking.
A big thank you to the unicode-rs team for their [unicode-segmentation](https://crates.io/crates/unicode-segmentation) crate that manages a lot of the complexity of matching the Unicode rules for words and sentences.
*/
#![warn(
clippy::cargo,
clippy::pedantic,
future_incompatible,
missing_debug_implementations,
missing_docs,
nonstandard_style,
rust_2018_compatibility,
rust_2018_idioms,
rust_2021_compatibility,
unused
)]
#![cfg_attr(docsrs, feature(doc_auto_cfg, doc_cfg))]
use core::{
cmp::Ordering,
iter::once,
ops::{Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive},
};
use auto_enums::auto_enum;
use either::Either;
use itertools::Itertools;
use once_cell::sync::Lazy;
use regex::Regex;
use unicode_segmentation::UnicodeSegmentation;
mod characters;
#[cfg(feature = "tokenizers")]
mod huggingface;
#[cfg(feature = "tiktoken-rs")]
mod tiktoken;
pub use characters::Characters;
/// Result returned from a `ChunkSizer`. Includes the size of the chunk, in units
/// determined by the sizer, as well as the max byte offset of the text that
/// would fit within the given `ChunkCapacity`.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct ChunkSize {
/// Whether or not the entire chunk fits within the `ChunkCapacity`
fits: Ordering,
/// max byte offset of the text that fit within the given `ChunkCapacity`.
max_chunk_size_offset: Option<usize>,
/// Size of the chunk, in units used by the sizer.
size: usize,
}
impl ChunkSize {
/// Generate a chunk size from a given size. Will not be able to compute the
/// max byte offset that fits within the capacity.
pub fn from_size(size: usize, capacity: &impl ChunkCapacity) -> Self {
Self {
fits: capacity.fits(size),
max_chunk_size_offset: None,
size,
}
}
/// Generate a chunk size from an iterator of byte ranges for each encoded
/// element in the chunk.
pub fn from_offsets(
offsets: impl Iterator<Item = Range<usize>>,
capacity: &impl ChunkCapacity,
) -> Self {
let mut chunk_size = offsets.fold(
Self {
fits: Ordering::Less,
max_chunk_size_offset: None,
size: 0,
},
|mut acc, range| {
acc.size += 1;
if acc.size <= capacity.end() {
acc.max_chunk_size_offset = Some(range.end);
}
acc
},
);
chunk_size.fits = capacity.fits(chunk_size.size);
chunk_size
}
/// Determine whether the chunk size fits within the capacity or not
#[must_use]
pub fn fits(&self) -> Ordering {
self.fits
}
}
/// Determines the size of a given chunk.
pub trait ChunkSizer {
/// Determine the size of a given chunk to use for validation
fn chunk_size(&self, chunk: &str, capacity: &impl ChunkCapacity) -> ChunkSize;
}
/// Describes the largest valid chunk size(s) that can be generated.
///
/// An `end` size is required, which is the maximum possible chunk size that
/// can be generated.
///
/// A `start` size is optional. By specifying `start` and `end` it means a
/// range of sizes will be considered valid. Once a chunk has reached a length
/// that falls between `start` and `end` it will be returned.
///
/// It is always possible that a chunk may be returned that is less than the
/// `start` value, as adding the next piece of text may have made it larger
/// than the `end` capacity.
pub trait ChunkCapacity {
/// An optional `start` value. If both `start` and `end` are specified, a
/// valid chunk can fall anywhere between the two values (inclusive).
fn start(&self) -> Option<usize> {
None
}
/// The maximum size that a chunk can be.
#[must_use]
fn end(&self) -> usize;
/// Validate if a given chunk fits within the capacity
///
/// - `Ordering::Less` indicates more could be added
/// - `Ordering::Equal` indicates the chunk is within the capacity range
/// - `Ordering::Greater` indicates the chunk is larger than the capacity
fn fits(&self, chunk_size: usize) -> Ordering {
let end = self.end();
match self.start() {
Some(start) => {
if chunk_size < start {
Ordering::Less
} else if chunk_size > end {
Ordering::Greater
} else {
Ordering::Equal
}
}
None => chunk_size.cmp(&end),
}
}
}
impl ChunkCapacity for usize {
fn end(&self) -> usize {
*self
}
}
impl ChunkCapacity for Range<usize> {
fn start(&self) -> Option<usize> {
Some(self.start)
}
fn end(&self) -> usize {
self.end.saturating_sub(1).max(self.start)
}
}
impl ChunkCapacity for RangeFrom<usize> {
fn start(&self) -> Option<usize> {
Some(self.start)
}
fn end(&self) -> usize {
usize::MAX
}
}
impl ChunkCapacity for RangeFull {
fn start(&self) -> Option<usize> {
Some(usize::MIN)
}
fn end(&self) -> usize {
usize::MAX
}
}
impl ChunkCapacity for RangeInclusive<usize> {
fn start(&self) -> Option<usize> {
Some(*self.start())
}
fn end(&self) -> usize {
*self.end()
}
}
impl ChunkCapacity for RangeTo<usize> {
fn start(&self) -> Option<usize> {
Some(usize::MIN)
}
fn end(&self) -> usize {
self.end.saturating_sub(1)
}
}
impl ChunkCapacity for RangeToInclusive<usize> {
fn start(&self) -> Option<usize> {
Some(usize::MIN)
}
fn end(&self) -> usize {
self.end
}
}
/// Default plain-text splitter. Recursively splits chunks into the largest
/// semantic units that fit within the chunk size. Also will attempt to merge
/// neighboring chunks if they can fit within the given chunk size.
#[derive(Debug)]
pub struct TextSplitter<S>
where
S: ChunkSizer,
{
/// Method of determining chunk sizes.
chunk_sizer: S,
/// Whether or not all chunks should have whitespace trimmed.
/// If `false`, joining all chunks should return the original string.
/// If `true`, all chunks will have whitespace removed from beginning and end.
trim_chunks: bool,
}
impl Default for TextSplitter<Characters> {
fn default() -> Self {
Self::new(Characters)
}
}
impl<S> TextSplitter<S>
where
S: ChunkSizer,
{
/// Creates a new [`TextSplitter`].
///
/// ```
/// use text_splitter::{Characters, TextSplitter};
///
/// // Characters is the default, so you can also do `TextSplitter::default()`
/// let splitter = TextSplitter::new(Characters);
/// ```
#[must_use]
pub fn new(chunk_sizer: S) -> Self {
Self {
chunk_sizer,
trim_chunks: false,
}
}
/// Specify whether chunks should have whitespace trimmed from the
/// beginning and end or not.
///
/// If `false` (default), joining all chunks should return the original
/// string.
/// If `true`, all chunks will have whitespace removed from beginning and end.
///
/// ```
/// use text_splitter::{Characters, TextSplitter};
///
/// let splitter = TextSplitter::default().with_trim_chunks(true);
/// ```
#[must_use]
pub fn with_trim_chunks(mut self, trim_chunks: bool) -> Self {
self.trim_chunks = trim_chunks;
self
}
/// Generate a list of chunks from a given text. Each chunk will be up to the `chunk_capacity`.
///
/// ## Method
///
/// To preserve as much semantic meaning within a chunk as possible, a recursive approach is used, starting at larger semantic units and, if that is too large, breaking it up into the next largest unit. Here is an example of the steps used:
///
/// 1. Split the text by a given level
/// 2. For each section, does it fit within the chunk size?
/// a. Yes. Merge as many of these neighboring sections into a chunk as possible to maximize chunk length.
/// b. No. Split by the next level and repeat.
///
/// The boundaries used to split the text if using the top-level `split` method, in descending length:
///
/// 1. Descending sequence length of newlines. (Newline is `\r\n`, `\n`, or `\r`) Each unique length of consecutive newline sequences is treated as its own semantic level.
/// 2. [Unicode Sentence Boundaries](https://www.unicode.org/reports/tr29/#Sentence_Boundaries)
/// 3. [Unicode Word Boundaries](https://www.unicode.org/reports/tr29/#Word_Boundaries)
/// 4. [Unicode Grapheme Cluster Boundaries](https://www.unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries)
/// 5. Characters
///
/// Splitting doesn't occur below the character level, otherwise you could get partial
/// bytes of a char, which may not be a valid unicode str.
///
/// ```
/// use text_splitter::{Characters, TextSplitter};
///
/// let splitter = TextSplitter::default();
/// let text = "Some text\n\nfrom a\ndocument";
/// let chunks = splitter.chunks(text, 10).collect::<Vec<_>>();
///
/// assert_eq!(vec!["Some text", "\n\n", "from a\n", "document"], chunks);
/// ```
pub fn chunks<'splitter, 'text: 'splitter>(
&'splitter self,
text: &'text str,
chunk_capacity: impl ChunkCapacity + 'splitter,
) -> impl Iterator<Item = &'text str> + 'splitter {
self.chunk_indices(text, chunk_capacity).map(|(_, t)| t)
}
/// Returns an iterator over chunks of the text and their byte offsets.
/// Each chunk will be up to the `chunk_capacity`.
///
/// See [`TextSplitter::chunks`] for more information.
///
/// ```
/// use text_splitter::{Characters, TextSplitter};
///
/// let splitter = TextSplitter::default();
/// let text = "Some text\n\nfrom a\ndocument";
/// let chunks = splitter.chunk_indices(text, 10).collect::<Vec<_>>();
///
/// assert_eq!(vec![(0, "Some text"), (9, "\n\n"), (11, "from a\n"), (18, "document")], chunks);
pub fn chunk_indices<'splitter, 'text: 'splitter>(
&'splitter self,
text: &'text str,
chunk_capacity: impl ChunkCapacity + 'splitter,
) -> impl Iterator<Item = (usize, &'text str)> + 'splitter {
TextChunks::new(chunk_capacity, &self.chunk_sizer, text, self.trim_chunks)
}
}
/// Different semantic levels that text can be split by.
/// Each level provides a method of splitting text into chunks of a given level
/// as well as a fallback in case a given fallback is too large.
#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
enum SemanticLevel {
/// Split by individual chars. May be larger than a single byte,
/// but we don't go lower so we always have valid UTF str's.
Char,
/// Split by [unicode grapheme clusters](https://www.unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries) Grapheme,
/// Falls back to [`Self::Char`]
GraphemeCluster,
/// Split by [unicode words](https://www.unicode.org/reports/tr29/#Word_Boundaries)
/// Falls back to [`Self::GraphemeCluster`]
Word,
/// Split by [unicode sentences](https://www.unicode.org/reports/tr29/#Sentence_Boundaries)
/// Falls back to [`Self::Word`]
Sentence,
/// Split by given number of linebreaks, either `\n`, `\r`, or `\r\n`.
/// Falls back to the next lower number, or else [`Self::Sentence`]
LineBreak(usize),
}
// Lazy so that we don't have to compile them more than once
static LINEBREAKS: Lazy<Regex> = Lazy::new(|| Regex::new(r"(\r\n)+|\r+|\n+").unwrap());
/// Captures information about linebreaks for a given text, and their
/// various semantic levels.
#[derive(Debug)]
struct LineBreaks {
/// Range of each line break and its precalculated semantic level
line_breaks: Vec<(SemanticLevel, Range<usize>)>,
/// Maximum number of linebreaks in a given text
max_level: SemanticLevel,
}
impl LineBreaks {
/// Generate linebreaks for a given text
fn new(text: &str) -> Self {
let linebreaks = LINEBREAKS
.find_iter(text)
.map(|m| {
let range = m.range();
let level = text
.get(range.start..range.end)
.unwrap()
.graphemes(true)
.count();
(
match level {
0 => SemanticLevel::Sentence,
n => SemanticLevel::LineBreak(n),
},
range,
)
})
.collect::<Vec<_>>();
let max_level = *linebreaks
.iter()
.map(|(l, _)| l)
.max_by_key(|level| match level {
SemanticLevel::LineBreak(n) => n,
_ => &0,
})
.unwrap_or(&SemanticLevel::Sentence);
Self {
line_breaks: linebreaks,
max_level,
}
}
/// Retrieve ranges for all linebreaks of a given level after an offset
fn ranges(
&self,
offset: usize,
level: SemanticLevel,
) -> impl Iterator<Item = &(SemanticLevel, Range<usize>)> + '_ {
self.line_breaks
.iter()
.filter(move |(l, sep)| l >= &level && sep.start >= offset)
}
/// Return a unique, sorted list of all line break levels present before the next max level, added
/// to all of the base semantic levels, in order from smallest to largest
fn levels_in_next_max_chunk(&self, offset: usize) -> impl Iterator<Item = SemanticLevel> + '_ {
let line_break_levels = self
.line_breaks
.iter()
// Only start taking them from the offset
.filter(|(_, sep)| sep.start >= offset)
// Stop once we hit the first of the max level
.take_while(|(l, _)| l < &self.max_level)
.map(|(l, _)| l)
.copied();
[
SemanticLevel::Char,
SemanticLevel::GraphemeCluster,
SemanticLevel::Word,
SemanticLevel::Sentence,
self.max_level,
]
.into_iter()
.chain(line_break_levels)
.sorted()
.dedup()
}
}
/// Returns chunks of text with their byte offsets as an iterator.
#[derive(Debug)]
struct TextChunks<'text, 'sizer, C, S>
where
C: ChunkCapacity,
S: ChunkSizer,
{
/// Size of the chunks to generate
chunk_capacity: C,
/// How to validate chunk sizes
chunk_sizer: &'sizer S,
/// Current byte offset in the `text`
cursor: usize,
/// Ranges where linebreaks occur. Save to optimize how many regex
/// passes we need to do.
line_breaks: LineBreaks,
/// Original text to iterate over and generate chunks from
text: &'text str,
/// Whether or not chunks should be trimmed
trim_chunks: bool,
}
impl<'text, 'sizer, C, S> TextChunks<'text, 'sizer, C, S>
where
C: ChunkCapacity,
S: ChunkSizer,
{
/// Generate new [`TextChunks`] iterator for a given text.
/// Starts with an offset of 0
fn new(chunk_capacity: C, chunk_sizer: &'sizer S, text: &'text str, trim_chunks: bool) -> Self {
Self {
cursor: 0,
chunk_capacity,
chunk_sizer,
line_breaks: LineBreaks::new(text),
text,
trim_chunks,
}
}
/// If trim chunks is on, trim the str and adjust the offset
fn trim_chunk(&self, offset: usize, chunk: &'text str) -> (usize, &'text str) {
if self.trim_chunks {
// Figure out how many bytes we lose trimming the beginning
let diff = chunk.len() - chunk.trim_start().len();
(offset + diff, chunk.trim())
} else {
(offset, chunk)
}
}
/// Is the given text within the chunk size?
fn check_capacity(&self, offset: usize, chunk: &str) -> ChunkSize {
let (offset, chunk) = self.trim_chunk(offset, chunk);
let mut chunk_size = self.chunk_sizer.chunk_size(chunk, &self.chunk_capacity);
if let Some(max_chunk_size_offset) = chunk_size.max_chunk_size_offset.as_mut() {
*max_chunk_size_offset += offset;
}
chunk_size
}
/// Generate the next chunk, applying trimming settings.
/// Returns final byte offset and str.
/// Will return `None` if given an invalid range.
fn next_chunk(&mut self) -> Option<(usize, &'text str)> {
let start = self.cursor;
let mut end = self.cursor;
let mut equals_found = false;
let sections = self.next_sections()?.collect::<Vec<_>>();
let mut sizes = sections
.iter()
.map(|_| None)
.collect::<Vec<Option<ChunkSize>>>();
let mut low = 0;
let mut high = sections.len().saturating_sub(1);
let mut successful_index = None;
while low <= high {
let mid = low + (high - low) / 2;
let (offset, str) = sections[mid];
let text_end = offset + str.len();
let chunk = self.text.get(start..text_end)?;
let chunk_size = self.check_capacity(start, chunk);
sizes[mid] = Some(chunk_size);
match chunk_size.fits {
Ordering::Less => {
// We got further than the last one, so update end
if text_end > end {
end = text_end;
successful_index = Some(mid);
}
}
Ordering::Equal => {
// If we found a smaller equals use it. Or if this is the first equals we found
if text_end < end || !equals_found {
end = text_end;
successful_index = Some(mid);
}
equals_found = true;
}
Ordering::Greater => {
// If we're too big on our smallest run, we must return at least one section
if mid == 0 && start == end {
end = text_end;
successful_index = Some(mid);
}
}
};
// Adjust search area
if chunk_size.fits.is_lt() {
low = mid + 1;
} else if mid > 0 {
high = mid - 1;
} else {
// Nothing to adjust
break;
}
}
// Sometimes with tokenization, we can get a bigger chunk for the same amount of tokens.
if let Some((successful_index, chunk_size)) =
successful_index.and_then(|successful_index| {
Some((successful_index, sizes.get(successful_index)?.as_ref()?))
})
{
for (size, (offset, str)) in sizes.iter().zip(sections).skip(successful_index) {
let text_end = offset + str.len();
match size {
Some(size) if size.size <= chunk_size.size => {
if text_end > end {
end = text_end;
}
}
// We didn't tokenize this section yet
None => {
let chunk = self.text.get(start..text_end)?;
let size = self.check_capacity(start, chunk);
if size.size <= chunk_size.size {
if text_end > end {
end = text_end;
}
} else {
break;
}
}
_ => break,
}
}
}
self.cursor = end;
let chunk = self.text.get(start..self.cursor)?;
// Trim whitespace if user requested it
Some(if self.trim_chunks {
// Figure out how many bytes we lose trimming the beginning
let offset = chunk.len() - chunk.trim_start().len();
(start + offset, chunk.trim())
} else {
(start, chunk)
})
}
/// Split a given text into iterator over each semantic chunk
#[auto_enum(Iterator)]
fn semantic_chunks(
&self,
semantic_level: SemanticLevel,
) -> impl Iterator<Item = (usize, &'text str)> + '_ {
let text = self.text.get(self.cursor..).unwrap();
match semantic_level {
SemanticLevel::Char => text.char_indices().map(|(i, c)| {
(
self.cursor + i,
text.get(i..i + c.len_utf8()).expect("char should be valid"),
)
}),
SemanticLevel::GraphemeCluster => text
.grapheme_indices(true)
.map(|(i, str)| (self.cursor + i, str)),
SemanticLevel::Word => text
.split_word_bound_indices()
.map(|(i, str)| (self.cursor + i, str)),
SemanticLevel::Sentence => text
.split_sentence_bound_indices()
.map(|(i, str)| (self.cursor + i, str)),
SemanticLevel::LineBreak(_) => split_str_by_separator(
text,
self.line_breaks
.ranges(self.cursor, semantic_level)
.map(|(_, sep)| sep.start - self.cursor..sep.end - self.cursor),
)
.map(|(i, str)| (self.cursor + i, str)),
}
}
/// Find the ideal next sections, breaking it up until we find the largest chunk.
/// Increasing length of chunk until we find biggest size to minimize validation time
/// on huge chunks
fn next_sections(&self) -> Option<impl Iterator<Item = (usize, &'text str)> + '_> {
// Next levels to try. Will stop at max level. We check only levels in the next max level
// chunk so we don't bypass it if not all levels are present in every chunk.
let mut levels = self.line_breaks.levels_in_next_max_chunk(self.cursor);
// Get starting level
let mut semantic_level = levels.next()?;
// If we aren't at the highest semantic level, stop iterating sections that go beyond the range of the next level.
let mut max_encoded_offset = None;
for level in levels {
let (_, str) = self.semantic_chunks(level).next()?;
let chunk_size = self.check_capacity(self.cursor, str);
// If this no longer fits, we use the level we are at. Or if we already
// have the rest of the string
if chunk_size.fits.is_gt() || self.text.get(self.cursor..)? == str {
max_encoded_offset = chunk_size.max_chunk_size_offset;
break;
}
// Otherwise break up the text with the next level
semantic_level = level;
}
Some(
self.semantic_chunks(semantic_level)
// We don't want to return items at this level that go beyond the next highest semantic level, as that is most
// likely a meaningful breakpoint we want to preserve. We already know that the next highest doesn't fit anyway,
// so we should be safe to break once we reach it.
.take_while_inclusive(move |(offset, _)| {
max_encoded_offset.map_or(true, |max| offset <= &max)
})
.filter(|(_, str)| !str.is_empty()),
)
}
}
impl<'text, 'sizer, C, S> Iterator for TextChunks<'text, 'sizer, C, S>
where
C: ChunkCapacity,
S: ChunkSizer,
{
type Item = (usize, &'text str);
fn next(&mut self) -> Option<Self::Item> {
loop {
// Make sure we haven't reached the end
if self.cursor >= self.text.len() {
return None;
}
match self.next_chunk()? {
// Make sure we didn't get an empty chunk. Should only happen in
// cases where we trim.
(_, chunk) if chunk.is_empty() => continue,
c => return Some(c),
}
}
}
}
/// Given a list of separator ranges, construct the sections of the text
fn split_str_by_separator(
text: &str,
separator_ranges: impl Iterator<Item = Range<usize>>,
) -> impl Iterator<Item = (usize, &str)> {
let mut cursor = 0;
let mut final_match = false;
separator_ranges
.batching(move |it| match it.next() {
// If we've hit the end, actually return None
None if final_match => None,
// First time we hit None, return the final section of the text
None => {
final_match = true;
text.get(cursor..).map(|t| Either::Left(once((cursor, t))))
}
// Return text preceding match + the match
Some(range) => {
let offset = cursor;
let prev_section = text
.get(cursor..range.start)
.expect("invalid character sequence");
let separator = text
.get(range.start..range.end)
.expect("invalid character sequence");
cursor = range.end;
Some(Either::Right(
[(offset, prev_section), (range.start, separator)].into_iter(),
))
}
})
.flatten()
}
#[cfg(test)]
mod tests {
use std::cmp::min;
use fake::{Fake, Faker};
use super::*;
#[test]
fn returns_one_chunk_if_text_is_shorter_than_max_chunk_size() {
let text = Faker.fake::<String>();
let chunks = TextChunks::new(text.chars().count(), &Characters, &text, false)
.map(|(_, c)| c)
.collect::<Vec<_>>();
assert_eq!(vec![&text], chunks);
}
#[test]
fn returns_two_chunks_if_text_is_longer_than_max_chunk_size() {
let text1 = Faker.fake::<String>();
let text2 = Faker.fake::<String>();
let text = format!("{text1}{text2}");
// Round up to one above half so it goes to 2 chunks
let max_chunk_size = text.chars().count() / 2 + 1;
let chunks = TextChunks::new(max_chunk_size, &Characters, &text, false)
.map(|(_, c)| c)
.collect::<Vec<_>>();
assert!(chunks.iter().all(|c| c.chars().count() <= max_chunk_size));
// Check that beginning of first chunk and text 1 matches
let len = min(text1.len(), chunks[0].len());
assert_eq!(text1[..len], chunks[0][..len]);
// Check that end of second chunk and text 2 matches
let len = min(text2.len(), chunks[1].len());
assert_eq!(
text2[(text2.len() - len)..],
chunks[1][chunks[1].len() - len..]
);
assert_eq!(chunks.join(""), text);
}
#[test]
fn empty_string() {
let text = "";
let chunks = TextChunks::new(100, &Characters, text, false)
.map(|(_, c)| c)
.collect::<Vec<_>>();
assert!(chunks.is_empty());
}
#[test]
fn can_handle_unicode_characters() {
let text = "éé"; // Char that is more than one byte
let chunks = TextChunks::new(1, &Characters, text, false)
.map(|(_, c)| c)
.collect::<Vec<_>>();
assert_eq!(vec!["é", "é"], chunks);
}
// Just for testing
struct Str;
impl ChunkSizer for Str {
fn chunk_size(&self, chunk: &str, capacity: &impl ChunkCapacity) -> ChunkSize {
ChunkSize::from_offsets(
chunk.as_bytes().iter().enumerate().map(|(i, _)| (i..i)),
capacity,
)
}
}
#[test]
fn custom_len_function() {
let text = "éé"; // Char that is two bytes each
let chunks = TextChunks::new(2, &Str, text, false)
.map(|(_, c)| c)
.collect::<Vec<_>>();
assert_eq!(vec!["é", "é"], chunks);
}
#[test]
fn handles_char_bigger_than_len() {
let text = "éé"; // Char that is two bytes each
let chunks = TextChunks::new(1, &Str, text, false)
.map(|(_, c)| c)
.collect::<Vec<_>>();
// We can only go so small
assert_eq!(vec!["é", "é"], chunks);
}
#[test]
fn chunk_by_graphemes() {
let text = "a̐éö̲\r\n";
let chunks = TextChunks::new(3, &Characters, text, false)
.map(|(_, g)| g)
.collect::<Vec<_>>();
// \r\n is grouped together not separated
assert_eq!(vec!["a̐é", "ö̲", "\r\n"], chunks);
}
#[test]
fn trim_char_indices() {
let text = " a b ";
let chunks = TextChunks::new(1, &Characters, text, true).collect::<Vec<_>>();
assert_eq!(vec![(1, "a"), (3, "b")], chunks);
}
#[test]
fn graphemes_fallback_to_chars() {
let text = "a̐éö̲\r\n";
let chunks = TextChunks::new(1, &Characters, text, false)
.map(|(_, g)| g)
.collect::<Vec<_>>();
assert_eq!(
vec!["a", "\u{310}", "é", "ö", "\u{332}", "\r", "\n"],
chunks
);
}
#[test]
fn trim_grapheme_indices() {
let text = "\r\na̐éö̲\r\n";
let chunks = TextChunks::new(3, &Characters, text, true).collect::<Vec<_>>();
assert_eq!(vec![(2, "a̐é"), (7, "ö̲")], chunks);
}
#[test]
fn chunk_by_words() {
let text = "The quick (\"brown\") fox can't jump 32.3 feet, right?";
let chunks = TextChunks::new(10, &Characters, text, false)
.map(|(_, w)| w)
.collect::<Vec<_>>();
assert_eq!(
vec![
"The quick ",
"(\"brown\") ",
"fox can't ",
"jump 32.3 ",
"feet, ",
"right?"
],
chunks
);
}
#[test]
fn words_fallback_to_graphemes() {
let text = "Thé quick\r\n";
let chunks = TextChunks::new(2, &Characters, text, false)
.map(|(_, w)| w)
.collect::<Vec<_>>();
assert_eq!(vec!["Th", "é ", "qu", "ic", "k", "\r\n"], chunks);
}
#[test]
fn trim_word_indices() {
let text = "Some text from a document";
let chunks = TextChunks::new(10, &Characters, text, true).collect::<Vec<_>>();
assert_eq!(
vec![(0, "Some text"), (10, "from a"), (17, "document")],
chunks
);
}
#[test]
fn chunk_by_sentences() {
let text = "Mr. Fox jumped. [...] The dog was too lazy.";
let chunks = TextChunks::new(21, &Characters, text, false)
.map(|(_, s)| s)
.collect::<Vec<_>>();
assert_eq!(
vec!["Mr. Fox jumped. ", "[...] ", "The dog was too lazy."],
chunks
);
}
#[test]
fn sentences_falls_back_to_words() {
let text = "Mr. Fox jumped. [...] The dog was too lazy.";
let chunks = TextChunks::new(16, &Characters, text, false)
.map(|(_, s)| s)
.collect::<Vec<_>>();
assert_eq!(
vec!["Mr. Fox jumped. ", "[...] ", "The dog was too ", "lazy."],
chunks
);
}
#[test]
fn trim_sentence_indices() {
let text = "Some text. From a document.";
let chunks = TextChunks::new(10, &Characters, text, true).collect::<Vec<_>>();
assert_eq!(
vec![(0, "Some text."), (11, "From a"), (18, "document.")],
chunks
);
}
#[test]
fn trim_paragraph_indices() {
let text = "Some text\n\nfrom a\ndocument";
let chunks = TextChunks::new(10, &Characters, text, true).collect::<Vec<_>>();
assert_eq!(
vec![(0, "Some text"), (11, "from a"), (18, "document")],
chunks
);
}
#[test]
fn correctly_determines_newlines() {
let text = "\r\n\r\ntext\n\n\ntext2";
let linebreaks = LineBreaks::new(text);
assert_eq!(
vec![
(SemanticLevel::LineBreak(2), 0..4),
(SemanticLevel::LineBreak(3), 8..11)
],
linebreaks.line_breaks
);
assert_eq!(SemanticLevel::LineBreak(3), linebreaks.max_level);
}
#[test]
fn check_chunk_capacity() {
let chunk = "12345";
assert_eq!(Characters.chunk_size(chunk, &4).fits, Ordering::Greater);
assert_eq!(Characters.chunk_size(chunk, &5).fits, Ordering::Equal);
assert_eq!(Characters.chunk_size(chunk, &6).fits, Ordering::Less);
}
#[test]
fn check_chunk_capacity_for_range() {
let chunk = "12345";
assert_eq!(
Characters.chunk_size(chunk, &(0..0)).fits,
Ordering::Greater
);
assert_eq!(
Characters.chunk_size(chunk, &(0..5)).fits,
Ordering::Greater
);
assert_eq!(Characters.chunk_size(chunk, &(5..6)).fits, Ordering::Equal);
assert_eq!(Characters.chunk_size(chunk, &(6..100)).fits, Ordering::Less);
}
#[test]
fn check_chunk_capacity_for_range_from() {
let chunk = "12345";
assert_eq!(Characters.chunk_size(chunk, &(0..)).fits, Ordering::Equal);
assert_eq!(Characters.chunk_size(chunk, &(5..)).fits, Ordering::Equal);
assert_eq!(Characters.chunk_size(chunk, &(6..)).fits, Ordering::Less);
}
#[test]
fn check_chunk_capacity_for_range_full() {
let chunk = "12345";
assert_eq!(Characters.chunk_size(chunk, &..).fits, Ordering::Equal);
}
#[test]
fn check_chunk_capacity_for_range_inclusive() {
let chunk = "12345";
assert_eq!(
Characters.chunk_size(chunk, &(0..=4)).fits,
Ordering::Greater
);
assert_eq!(Characters.chunk_size(chunk, &(5..=6)).fits, Ordering::Equal);
assert_eq!(Characters.chunk_size(chunk, &(4..=5)).fits, Ordering::Equal);
assert_eq!(
Characters.chunk_size(chunk, &(6..=100)).fits,
Ordering::Less
);
}
#[test]
fn check_chunk_capacity_for_range_to() {
let chunk = "12345";
assert_eq!(Characters.chunk_size(chunk, &(..0)).fits, Ordering::Greater);
assert_eq!(Characters.chunk_size(chunk, &(..5)).fits, Ordering::Greater);
assert_eq!(Characters.chunk_size(chunk, &(..6)).fits, Ordering::Equal);
}
#[test]
fn check_chunk_capacity_for_range_to_inclusive() {
let chunk = "12345";
assert_eq!(
Characters.chunk_size(chunk, &(..=4)).fits,
Ordering::Greater
);
assert_eq!(Characters.chunk_size(chunk, &(..=5)).fits, Ordering::Equal);
assert_eq!(Characters.chunk_size(chunk, &(..=6)).fits, Ordering::Equal);
}
#[test]
fn chunk_size_from_offsets() {
let offsets = [0..1, 1..2, 2..3];
let chunk_size = ChunkSize::from_offsets(offsets.clone().into_iter(), &1);
assert_eq!(
ChunkSize {
fits: Ordering::Greater,
size: offsets.len(),
max_chunk_size_offset: Some(1)
},
chunk_size
);
}
#[test]
fn chunk_size_from_empty_offsets() {
let offsets = [];
let chunk_size = ChunkSize::from_offsets(offsets.clone().into_iter(), &1);
assert_eq!(
ChunkSize {
fits: Ordering::Less,
size: offsets.len(),
max_chunk_size_offset: None
},
chunk_size
);
}
#[test]
fn chunk_size_from_small_offsets() {
let offsets = [0..1, 1..2, 2..3];
let chunk_size = ChunkSize::from_offsets(offsets.clone().into_iter(), &4);
assert_eq!(
ChunkSize {
fits: Ordering::Less,
size: offsets.len(),
max_chunk_size_offset: Some(3)
},
chunk_size
);
}
}