1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
// Copyright 2018 David Sietz and [`test-data-generator` contributors](https://github.com/dsietz/test-data-generator/blob/master/CONTRIBUTORS.md).
// Licensed under the MIT license
// (see LICENSE or <https://opensource.org/licenses/Apache-2.0>)
//
//!
//! The are multiple ways to use the Test Data Generation library. It all depends on your intent.
//!
//! ### Profile
//!
//! The easiest way is to use a Profile. The `profile` module provides functionality to create a profile on a data sample (Strings).
//! Once a profile has been made, data can be generated by calling the _pre_generate()_ and _generate()_ functions, in that order.
//!
//! ```
//! extern crate test_data_generation;
//!
//! use test_data_generation::Profile;
//!
//! fn main() {
//!     // analyze the dataset
//! 	let mut data_profile =  Profile::new();
//!
//!     // analyze the dataset
//! 	data_profile.analyze("Smith, John");
//! 	data_profile.analyze("Doe, John");
//! 	data_profile.analyze("Dale, Danny");
//! 	data_profile.analyze("Rickets, Ronney");
//!
//!     // confirm 4 data samples were analyzed
//!    	assert_eq!(data_profile.patterns.len(), 4);
//!
//!     // prepare the generator
//!     data_profile.pre_generate();
//!
//!     // generate some data
//!    	println!("The generated name is {:?}", data_profile.generate());
//! }
//! ```
//!
//! You can also export (archive as JSON file) the profile for later use.
//! This allows for the algorithm to be retrieved without having to store the actual data that was analyzed.
//!
//!	```
//! extern crate test_data_generation;
//!
//! use test_data_generation::Profile;
//!
//! fn main() {
//!		//create a profile and analyze some data
//!		let mut old_profile =  Profile::new();
//!		old_profile.analyze("Smith, John");
//!		old_profile.analyze("O'Brian, Henny");
//!		old_profile.analyze("Dale, Danny");
//!		old_profile.analyze("Rickets, Ronney");
//!
//!		old_profile.pre_generate();
//!
//!		//save the profile for later
//!		assert_eq!(old_profile.save("./tests/samples/sample-00-profile").unwrap(), true);
//!
//!		// create a new profile from the archive json file
//!		let mut new_profile = Profile::from_file("./tests/samples/sample-00-profile");
//!
//!		// generate some data. NOTE that the pre-generate() was already called prior to saving
//!     println!("The generated name is {:?}", new_profile.generate());
//! }
//! ```
//!
//! ### Data Sample Parser
//!
//! If you are using CSV files of data samples, then you may wish to use a Data Sample Parser.
//! The `data_sample_parser` module provides functionality to read sample data, parse and analyze it, so that test data can be generated based on profiles.
//!
//! ```
//! extern crate test_data_generation;
//! use test_data_generation::data_sample_parser::DataSampleParser;
//!
//! fn main() {
//!     let mut dsp = DataSampleParser::new();
//!     dsp.analyze_csv_file(&String::from("./tests/samples/sample-01.csv"), None).unwrap();
//!
//!     println!("My new name is {} {}", dsp.generate_record()[0], dsp.generate_record()[1]);
//!     // My new name is Abbon Aady
//! }
//! ```
//!
//! You can also save the Data Sample Parser (the algorithm) as an archive file (json) ...
//!
//! ```
//! extern crate test_data_generation;
//! use test_data_generation::data_sample_parser::DataSampleParser;
//!
//! fn main() {
//!     let mut dsp =  DataSampleParser::new();
//!     dsp.analyze_csv_file(&String::from("./tests/samples/sample-01.csv"), None).unwrap();
//!
//!     assert_eq!(dsp.save(&String::from("./tests/samples/sample-01-dsp")).unwrap(), true);
//! }
//! ```
//!
//! and use it at a later time.
//!
//! ```
//! extern crate test_data_generation;
//! use test_data_generation::data_sample_parser::DataSampleParser;
//!
//! fn main() {
//!     let mut dsp = DataSampleParser::from_file(&String::from("./tests/samples/sample-01-dsp"));
//!
//! 	println!("Sample data is {:?}", dsp.generate_record()[0]);
//! }
//! ```
//!
//! You can also generate a new csv file based on the data sample provided.
//!
//! ```
//! extern crate test_data_generation;
//!
//! use test_data_generation::data_sample_parser::DataSampleParser;
//!
//! fn main() {
//!     let mut dsp =  DataSampleParser::new();
//!
//!     // Use the default delimiter (comma)
//!    	dsp.analyze_csv_file(&String::from("./tests/samples/sample-01.csv"), None).unwrap();
//!    	dsp.generate_csv(100, &String::from("./tests/samples/generated-01.csv"), None).unwrap();
//! }
//! ```
#![crate_type = "lib"]
#![crate_name = "test_data_generation"]

#[macro_use]
extern crate log;

#[macro_use]
extern crate serde_derive;
extern crate crossbeam;
extern crate csv;
extern crate indexmap;
extern crate levenshtein;
extern crate rand;
extern crate regex;
extern crate serde;
extern crate serde_json;
extern crate serde_yaml;
extern crate yaml_rust;

use crate::engine::{Fact, PatternDefinition};
use std::collections::BTreeMap;
use std::fs::File;
use std::io;
use std::io::prelude::*;
use std::io::Write;
use std::ops::AddAssign;

type PatternMap = BTreeMap<String, u32>;
type SizeMap = BTreeMap<u32, u32>;
type SizeRankMap = BTreeMap<u32, f64>;

#[derive(Clone, Serialize, Deserialize, Debug)]
/// Represents a Profile for sample data that has been analyzed and can be used to generate realistic data
pub struct Profile {
    /// An identifier (not necessarily unique) that is used to differentiate profiles from one another
    pub id: Option<String>,
    /// A list of symbolic patterns with a distinct count of occurrences
    pub patterns: PatternMap,
    /// The total number of patterns in the profile
    pub pattern_total: u32,
    /// A list of symbolic patterns in the profile
    /// (used for temporary storage due to lifetime issues)
    pub pattern_keys: Vec<String>,
    /// A list of distinct counts for patterns in the profile
    /// (used for temporary storage due to lifetime issues)
    pub pattern_vals: Vec<u32>,
    /// A list of symbolic patterns with their percent chance of occurrence
    pub pattern_percentages: Vec<(String, f64)>,
    /// A list of symbolic patterns with a running total of percent chance of occurrence, in increasing order
    pub pattern_ranks: Vec<(String, f64)>,
    /// A list of pattern lengths with a distinct count of occurrence
    pub sizes: SizeMap,
    /// the total number of pattern sizes (lengths) in the profile
    pub size_total: u32,
    /// A list of pattern sizes (lengths) with a running total of their percent chance of occurrence, in increasing order
    pub size_ranks: Vec<(u32, f64)>,
    /// The number of processors used to distribute the work load (multi-thread) while finding Facts to generate data
    pub processors: u8,
    /// A list of processors (which are lists of Facts) that store all the Facts in the profile
    pub facts: Vec<Vec<Fact>>,
}

impl Profile {
    /// Constructs a new Profile
    ///
    /// #Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let placeholder = Profile::new();
    /// }
    /// ```
    pub fn new() -> Profile {
        Profile {
            id: None,
            patterns: PatternMap::new(),
            pattern_total: 0,
            pattern_keys: Vec::new(),
            pattern_vals: Vec::new(),
            pattern_percentages: Vec::new(),
            pattern_ranks: Vec::new(),
            sizes: SizeMap::new(),
            size_total: 0,
            size_ranks: Vec::new(),
            processors: 4,
            facts: Profile::new_facts(4),
        }
    }

    /// Constructs a new Profile using an identifier
    ///
    /// #Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let placeholder = Profile::new_with_id("12345".to_string());
    /// }
    /// ```
    pub fn new_with_id(id: String) -> Profile {
        Profile {
            id: Some(id),
            patterns: PatternMap::new(),
            pattern_total: 0,
            pattern_keys: Vec::new(),
            pattern_vals: Vec::new(),
            pattern_percentages: Vec::new(),
            pattern_ranks: Vec::new(),
            sizes: SizeMap::new(),
            size_total: 0,
            size_ranks: Vec::new(),
            processors: 4,
            facts: Profile::new_facts(4),
        }
    }

    /// Constructs a new Profile with a specified number of processors to analyze the data.
    /// Each processor shares the load of generating the data based on the Facts it has been assigned to manage.
    ///
    /// # Arguments
    ///
    /// * `p: u8` - A number that sets the number of processors to start up to manage the Facts.</br>
    ///         Increasing the number of processors will speed up the generator be distributing the workload.
    ///         The recommended number of processors is 1 per 10K data points (e.g.: profiling 20K names should be handled by 2 processors)</br>
    ///         NOTE: The default number of processors is 4.
    ///
    /// #Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    ///     let processors: u8 = 10;
    /// 	let placeholder = Profile::new_with_processors(processors);
    /// }
    /// ```
    pub fn new_with_processors(p: u8) -> Profile {
        Profile {
            id: None,
            patterns: PatternMap::new(),
            pattern_total: 0,
            pattern_keys: Vec::new(),
            pattern_vals: Vec::new(),
            pattern_percentages: Vec::new(),
            pattern_ranks: Vec::new(),
            sizes: SizeMap::new(),
            size_total: 0,
            size_ranks: Vec::new(),
            processors: p,
            facts: Profile::new_facts(p),
        }
    }

    /// Constructs a new Profile from an exported JSON file. This is used when restoring from "archive"
    ///
    /// # Arguments
    ///
    /// * `path: &str` - The full path of the export file , excluding the file extension, (e.g.: "./test/data/custom-names").</br>
    ///
    /// #Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    ///		let mut profile = Profile::from_file("./tests/samples/sample-00-profile");
    ///
    ///     profile.pre_generate();
    ///
    ///     println!("The generated name is {:?}", profile.generate());
    /// }
    /// ```
    pub fn from_file(path: &'static str) -> Profile {
        // open the archive file
        let mut file = match File::open(format!("{}.json", &path)) {
            Err(_e) => {
                error!("Could not open file {:?}", &path.to_string());
                panic!("Could not open file {:?}", &path.to_string());
            }
            Ok(f) => {
                info!("Successfully opened file {:?}", &path.to_string());
                f
            }
        };

        //read the archive file
        let mut serialized = String::new();
        match file.read_to_string(&mut serialized) {
            Err(e) => {
                error!(
                    "Could not read file {:?} because of {:?}",
                    &path.to_string(),
                    e.to_string()
                );
                panic!(
                    "Could not read file {:?} because of {:?}",
                    &path.to_string(),
                    e.to_string()
                );
            }
            Ok(s) => {
                info!("Successfully read file {:?}", &path.to_string());
                s
            }
        };

        //serde_json::from_str(&serialized).unwrap()
        Self::from_serialized(&serialized)
    }

    /// Constructs a new Profile from a serialized (JSON) string of the Profile object. This is used when restoring from "archive"
    ///
    /// #Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    ///		let serialized = "{\"patterns\":{\"VC\":1},\"pattern_total\":1,\"pattern_keys\":[\"VC\"],\"pattern_vals\":[1],\"pattern_percentages\":[],\"pattern_ranks\":[],\"sizes\":{\"2\":1},\"size_total\":1,\"size_ranks\":[],\"processors\":4,\"facts\":[[{\"key\":\"O\",\"prior_key\":null,\"next_key\":\"K\",\"pattern_placeholder\":\"V\",\"starts_with\":1,\"ends_with\":0,\"index_offset\":0}],[{\"key\":\"K\",\"prior_key\":\"O\",\"next_key\":null,\"pattern_placeholder\":\"C\",\"starts_with\":0,\"ends_with\":1,\"index_offset\":1}],[],[]]}";
    ///		let mut profile = Profile::from_serialized(&serialized);
    ///
    ///     profile.pre_generate();
    ///
    ///     println!("The generated name is {:?}", profile.generate());
    /// }
    /// ```
    pub fn from_serialized(serialized: &str) -> Profile {
        serde_json::from_str(&serialized).unwrap()
    }

    /// This function converts an data point (&str) to a pattern and adds it to the profile
    ///
    /// # Arguments
    ///
    /// * `entity: String` - The textual str of the value to analyze.</br>
    ///
    /// # Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let mut profile =  Profile::new();
    ///		profile.analyze("One");
    ///		profile.analyze("Two");
    ///		profile.analyze("Three");
    ///		profile.analyze("Four");
    ///
    ///		assert_eq!(profile.patterns.len(), 4);
    /// }
    /// ```
    pub fn analyze(&mut self, entity: &str) {
        let rslt = PatternDefinition::new().analyze(entity);
        let _t = self.apply_facts(rslt.0, rslt.1).map_err(|e| {
            error!(
                "Warning: Couldn't apply the pattern and facts for the entity {}!",
                entity
            );
            e.to_string()
        });
    }

    /// This function applies the pattern and list of Facts  to the profile
    ///
    /// # Arguments
    ///
    /// * `pattern: String` - The string the represents the pattern of the entity that was analyzed.</br>
    /// * `facts: Vec<Fact>` - A Vector containing the Facts based on the analysis (one for each char in the entity).</br>
    ///
    /// # Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::engine::{Fact, PatternDefinition};
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let mut profile =  Profile::new();
    ///		let results = PatternDefinition::new().analyze("Word");
    ///
    ///		assert_eq!(profile.apply_facts(results.0, results.1).unwrap(), 1);
    /// }
    /// ```
    #[inline]
    pub fn apply_facts(&mut self, pattern: String, facts: Vec<Fact>) -> Result<i32, String> {
        // balance the storing of facts across all the vectors that can be processed in parallel
        let mut i = 0;
        for f in facts.into_iter() {
            if i == self.processors {
                i = 0;
            }

            self.facts[i as usize].push(f);
            i += 1;
        }

        // store the pattern
        AddAssign::add_assign(self.patterns.entry(pattern.to_string()).or_insert(0), 1);

        // store the total number of patterns generated so far
        self.pattern_total = self.patterns.values().sum::<u32>();

        // analyze sizes
        AddAssign::add_assign(self.sizes.entry(pattern.len() as u32).or_insert(0), 1);
        self.size_total = self.sizes.values().sum::<u32>();

        self.pattern_keys = self.patterns.keys().cloned().collect();
        self.pattern_vals = self.patterns.values().cloned().collect();

        Ok(1)
    }

    /// This function calculates the patterns to use by the chance they will occur (as cumulative percentage) in decreasing order
    ///
    /// # Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let mut profile =  Profile::new();
    ///
    ///    	profile.analyze("Smith, John");
    ///    	profile.analyze("O'Brian, Henny");
    ///    	profile.analyze("Dale, Danny");
    ///    	profile.analyze("Rickets, Ronnae");
    ///    	profile.analyze("Richard, Richie");
    ///    	profile.analyze("Roberts, Blake");
    ///    	profile.analyze("Conways, Sephen");
    ///
    ///    	profile.pre_generate();
    ///    	let test = [("CvccvccpSCvccvv".to_string(), 28.57142857142857 as f64), ("CcvccpSCvcc".to_string(), 42.857142857142854 as f64), ("CvccvccpSCvccvc".to_string(), 57.14285714285714 as f64), ("CvcvcccpSCcvcv".to_string(), 71.42857142857142 as f64), ("CvcvpSCvccc".to_string(), 85.7142857142857 as f64), ("V@CcvvcpSCvccc".to_string(), 99.99999999999997 as f64)];
    ///
    ///    	assert_eq!(profile.pattern_ranks, test);
    /// }
    /// ```
    #[inline]
    pub fn cum_patternmap(&mut self) {
        // Reference: https://users.rust-lang.org/t/cannot-infer-an-appropriate-lifetime-for-autoref/13360/3

        debug!("calculating the cumulative percentage of occurences for data point patterns...");

        // calculate the percentage by patterns
        // -> {"CcvccpSCvcc": 14.285714285714285, "CvccvccpSCvccvc": 14.285714285714285, "CvccvccpSCvccvv": 28.57142857142857, "CvcvcccpSCcvcv": 14.285714285714285, "CvcvpSCvccc": 14.285714285714285, "V~CcvvcpSCvccc": 14.285714285714285}
        let n = self.patterns.len();

        // see issue: https://github.com/dsietz/test-data-generation/issues/88
        self.pattern_percentages.clear();

        for m in 0..n {
            self.pattern_percentages.push((
                self.pattern_keys[m].clone(),
                (self.pattern_vals[m] as f64 / self.pattern_total as f64) * 100.0,
            ));
        }

        // sort the ranks by percentages in decreasing order
        // -> [("CvccvccpSCvccvv", 28.57142857142857), ("CcvccpSCvcc", 14.285714285714285), ("CvccvccpSCvccvc", 14.285714285714285), ("CvcvcccpSCcvcv", 14.285714285714285), ("CvcvpSCvccc", 14.285714285714285), ("V~CcvvcpSCvccc", 14.285714285714285)]
        self.pattern_percentages
            .sort_by(|&(_, a), &(_, b)| b.partial_cmp(&a).unwrap());

        // calculate the cumulative sum of the pattern rankings
        // -> [("CvccvccpSCvccvv", 28.57142857142857), ("CcvccpSCvcc", 42.857142857142854), ("CvccvccpSCvccvc", 57.14285714285714), ("CvcvcccpSCcvcv", 71.42857142857142), ("CvcvpSCvccc", 85.7142857142857), ("V~CcvvcpSCvccc", 99.99999999999997)]
        let mut rank: f64 = 0.00;

        // see issue: https://github.com/dsietz/test-data-generation/issues/88
        self.pattern_ranks.clear();

        for pttrn in self.pattern_percentages.iter() {
            let tmp = pttrn.1 + rank;
            self.pattern_ranks.push((pttrn.0.clone(), tmp));
            rank = tmp;
        }
    }

    /// This function calculates the sizes to use by the chance they will occur (as cumulative percentage) in decreasing order
    ///
    /// # Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let mut profile =  Profile::new();
    ///		profile.analyze("One");
    ///		profile.analyze("Two");
    ///		profile.analyze("Three");
    ///		profile.analyze("Four");
    ///		profile.analyze("Five");
    ///		profile.analyze("Six");
    ///
    ///     profile.cum_sizemap();
    ///
    ///		print!("The size ranks are {:?}", profile.size_ranks);
    ///     // The size ranks are [(3, 50), (4, 83.33333333333333), (5, 100)]
    /// }
    /// ```
    #[inline]
    pub fn cum_sizemap(&mut self) {
        debug!("calculating the cumulative percentage of occurences for data point sizes...");
        // calculate the percentage by sizes
        // -> {11: 28.57142857142857, 14: 14.285714285714285, 15: 57.14285714285714}
        let mut size_ranks = SizeRankMap::new();

        for key in self.sizes.keys() {
            size_ranks.insert(
                *key,
                (*self.sizes.get(key).unwrap() as f64 / self.size_total as f64) * 100.0,
            );
        }

        // sort the ranks by percentages in decreasing order
        // -> [(15, 57.14285714285714), (11, 28.57142857142857), (14, 14.285714285714285)]
        let mut sizes = size_ranks.iter().collect::<Vec<_>>();
        sizes.sort_by(|&(_, a), &(_, b)| b.partial_cmp(a).unwrap());

        // calculate the cumulative sum of the size rankings
        // -> [(15, 57.14285714285714), (11, 85.71428571428571), (14, 100)]
        self.size_ranks = sizes
            .iter()
            .scan((0_u32, 0.00_f64), |state, &(&k, &v)| {
                *state = (k, state.1 + &v);
                Some(*state)
            })
            .collect::<Vec<(_, _)>>();
    }

    /// This function generates realistic test data based on the sampel data that was analyzed.
    ///
    /// # Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let mut profile =  Profile::new();
    ///
    ///		profile.analyze("One");
    ///		profile.analyze("Two");
    ///		profile.analyze("Three");
    ///		profile.analyze("Four");
    ///		profile.analyze("Five");
    ///
    ///     profile.pre_generate();
    ///
    ///		print!("The test data {:?} was generated.", profile.generate());
    /// }
    /// ```
    #[inline]
    pub fn generate(&mut self) -> String {
        // 1. get a random number
        let s: f64 = random_percentage!();

        // 2. find the first pattern that falls within the percentage chance of occurring
        // NOTE: The following 2 lines has been commented out because this doesn't need to
        //       happen since the patterns are already ranks by percent chance of occurring
        //       and therefore sizes (lengths) as well since the patterns include the full
        //       length of the entitiy analyzed.
        //let size = self.size_ranks.iter().find(|&&x|&x.1 >= &s).unwrap().0;
        //let pattern = self.pattern_ranks.iter().find(|x|&x.1 >= &s && x.0.len() == size as usize).unwrap().clone();
        let pattern = self
            .pattern_ranks
            .iter()
            .find(|x| &x.1 >= &s)
            .unwrap()
            .clone();

        // lastly, generate the test data using facts that adhere to the pattern
        self.generate_from_pattern(pattern.0)
    }

    /// This function generates realistic test data based on the sample data that was analyzed.
    ///
    /// # Arguments
    ///
    /// * `pattern: String` - The pattern to reference when generating the test data.</br>
    ///
    /// # Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let mut profile =  Profile::new();
    ///
    ///		profile.analyze("01/13/2017");
    ///		profile.analyze("11/24/2017");
    ///		profile.analyze("08/05/2017");
    ///
    ///     profile.pre_generate();
    ///
    ///  	let generated = profile.generate_from_pattern("##p##p####".to_string());
    ///
    ///     assert_eq!(generated.len(), 10);
    /// }
    /// ```
    #[inline]
    pub fn generate_from_pattern(&self, pattern: String) -> String {
        let pattern_chars = pattern.chars().collect::<Vec<char>>();
        let mut generated = String::new();
        let prev_char = ' ';

        // iterate through the chars in the pattern string
        for (idx, ch) in pattern_chars.iter().enumerate() {
            match crossbeam::scope(|scope| {
                let c = ch;
                let starts = if idx == 0 { 1 } else { 0 };
                let ends = if idx == pattern_chars.len() - 1 { 1 } else { 0 };
                let mut fact_options = vec![];
                let prior_char = prev_char;

                // iterate through the processors (vec) that hold the lists (vec) of facts
                for v in &self.facts {
                    let selected_facts = scope.spawn(move |_| {
                        let mut facts = vec![];

                        // iterate through the list of facts
                        for value in v {
                            if value.starts_with == starts
                                && value.ends_with == ends
                                && value.pattern_placeholder == *c
                                && value.index_offset == idx as u32
                            {
                                facts.push(value.key);

                                // if the value.key's prior char matches the prior generated char, then weight the value.key
                                // to increase the chance of it being used when generated
                                if value.prior_key.unwrap_or(' ') == prior_char {
                                    facts.push(value.key);
                                    facts.push(value.key);
                                }

                                // if the value.key's index_offset matches the current index, then weight the value.key
                                // to increase the chance of it being used when generated
                                if value.index_offset == idx as u32 {
                                    facts.push(value.key);
                                    facts.push(value.key);
                                }
                            }
                        }

                        facts
                    });

                    //append the selected_facts to the fact_options
                    //fact_options.extend_from_slice(&selected_facts.join());
                    match selected_facts.join() {
                        Ok(sf) => fact_options.extend_from_slice(&sf),
                        Err(err) => {
                            error!("{:?}", err);
                            panic!("{:?}", err);
                        }
                    }
                }

                //select a fact to use as the generated char
                let rnd_start = 0;
                let rnd_end = fact_options.len() - 1;

                if rnd_start >= rnd_end {
                    //generated.push(fact_options[0 as usize]);
                    fact_options[0_usize]
                } else {
                    let x: u32 = random_between!(rnd_start, rnd_end);
                    //prev_char = fact_options[x as usize];
                    //generated.push(prev_char);
                    fact_options[x as usize]
                }
            }) {
                Ok(c) => generated.push(c),
                Err(err) => {
                    error!("{:?}", err);
                    panic!("{:?}", err);
                }
            }
        }

        generated
    }

    /// This function learns by measuring how realistic the test data it generates to the sample data that was provided.
    ///
    /// # Arguments
    ///
    /// * `control_list: Vec<String>` - The list of strings to compare against. This would be the real data from the data sample.</br>
    ///
    /// # Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let mut profil =  Profile::new();
    /// 	let sample_data = vec!("Smith, John".to_string(),"Doe, John".to_string(),"Dale, Danny".to_string(),"Rickets, Ronney".to_string());
    ///
    /// 	for sample in sample_data.iter().clone() {
    /// 		profil.analyze(&sample);
    /// 	}
    ///
    /// 	// in order to learn the profile must be prepared with pre_genrate()
    ///		// so it can generate data to learn from
    ///		profil.pre_generate();
    ///
    /// 	let learning = profil.learn_from_entity(sample_data).unwrap();
    ///
    /// 	assert_eq!(learning, true);
    /// }
    /// ```
    pub fn learn_from_entity(&mut self, control_list: Vec<String>) -> Result<bool, String> {
        for _n in 0..10 {
            let experiment = self.generate();
            let mut percent_similarity: Vec<f64> = Vec::new();

            for control in control_list.iter().clone() {
                debug!("Comparing {} with {} ...", &control, &experiment);
                percent_similarity.push(self.realistic_test(&control, &experiment));
            }

            let percent =
                percent_similarity.iter().sum::<f64>() as f64 / percent_similarity.len() as f64;
            debug!("Percent similarity is {} ...", &percent);

            if percent >= 80_f64 {
                self.analyze(&experiment);
            }
        }

        Ok(true)
    }

    /// This function calculates the levenshtein distance between 2 strings.
    /// See: https://crates.io/crates/levenshtein
    ///
    /// # Arguments
    ///
    /// * `control: &String` - The string to compare against. This would be the real data from the data sample.</br>
    /// * `experiment: &String` - The string to compare. This would be the generated data for which you want to find the distance.</br>
    ///
    /// #Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    ///		let mut profile =  Profile::new();
    ///
    ///     assert_eq!(profile.levenshtein_distance(&"kitten".to_string(), &"sitting".to_string()), 3 as usize);
    /// }
    ///
    pub fn levenshtein_distance(&mut self, control: &String, experiment: &String) -> usize {
        // https://docs.rs/levenshtein/1.0.3/levenshtein/fn.levenshtein.html
        levenshtein_distance!(control, experiment)
    }

    /// This function calculates the percent difference between 2 strings.
    ///
    /// # Arguments
    ///
    /// * `control: &str` - The string to compare against. This would be the real data from the data sample.</br>
    /// * `experiment: &str` - The string to compare. This would be the generated data for which you want to find the percent difference.</br>
    ///
    /// #Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    ///		let mut profile =  Profile::new();
    ///
    ///     assert_eq!(profile.realistic_test(&"kitten".to_string(), &"sitting".to_string()), 76.92307692307692 as f64);
    /// }
    ///
    #[inline]
    pub fn realistic_test(&mut self, control: &str, experiment: &str) -> f64 {
        realistic_test!(control, experiment)
    }

    /// This function is called from within the implementated structure and returns a list processors (Vec) with empty lists (Vec) for their Facts.
    /// Each processor shares the load of generating the data based on the Facts it has been assigned to manage.
    ///
    /// # Arguments
    ///
    /// * `p: u8` - A number that sets the number of processors to start up to manage the Facts.</br>
    ///         Increasing the number of processors will speed up the generator be ditributing the workload.
    ///         The recommended number of processors is 1 per 10K data points (e.g.: profiling 20K names should be handled by 2 processors)</br>
    ///         NOTE: The default number of processors is 4.
    ///
    #[inline]
    fn new_facts(p: u8) -> Vec<Vec<Fact>> {
        let mut vec_main = Vec::new();

        for _ in 0..p {
            vec_main.push(Vec::new());
        }

        vec_main
    }

    /// This function prepares the size a pattern accumulated percentages order by percentage increasing
    ///
    /// # Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let mut profile =  Profile::new();
    ///		profile.analyze("One");
    ///		profile.analyze("Two");
    ///		profile.analyze("Three");
    ///		profile.analyze("Four");
    ///		profile.analyze("Five");
    ///		profile.analyze("Six");
    ///
    ///     profile.pre_generate();
    ///
    ///		print!("The size ranks are {:?}", profile.size_ranks);
    ///     // The size ranks are [(3, 50), (4, 83.33333333333333), (5, 100)]
    /// }
    /// ```
    pub fn pre_generate(&mut self) {
        info!("Preparing the profile for data generation...");
        self.cum_sizemap();
        self.cum_patternmap();
        info!("Profile: preparing generator...");
    }

    /// This function resets the patterns that the Profile has analyzed.
    /// Call this method whenever you wish to "clear" the Profile
    ///
    /// # Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	let mut profile =  Profile::new();
    ///
    ///		profile.analyze("One");
    ///		profile.analyze("Two");
    ///		profile.analyze("Three");
    ///
    ///     let x = profile.patterns.len();
    ///
    ///     profile.reset_analyze();
    ///
    ///		profile.analyze("Four");
    ///		profile.analyze("Five");
    ///		profile.analyze("Six");
    ///		profile.analyze("Seven");
    ///		profile.analyze("Eight");
    ///		profile.analyze("Nine");
    ///		profile.analyze("Ten");
    ///
    ///     let y = profile.patterns.len();
    ///
    ///     assert_eq!(x, 3);
    ///     assert_eq!(y, 5);
    /// }
    /// ```
    pub fn reset_analyze(&mut self) {
        info!("Resetting the profile ...");
        self.patterns = PatternMap::new();
        info!("Profile: patterns have been reset ...");
    }

    /// This function saves (exports) the Profile to a JSON file.
    /// This is useful when you wish to reuse the algorithm to generate more test data later.
    ///
    /// # Arguments
    ///
    /// * `field: String` - The full path of the export file , excluding the file extension, (e.g.: "./test/data/custom-names").</br>
    ///
    /// #Errors
    /// If this function encounters any form of I/O or other error, an error variant will be returned.
    /// Otherwise, the function returns Ok(true).</br>
    ///
    /// #Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	// analyze the dataset
    ///		let mut profile =  Profile::new();
    ///     profile.analyze("Smith, John");
    ///		profile.analyze("O'Brian, Henny");
    ///		profile.analyze("Dale, Danny");
    ///		profile.analyze("Rickets, Ronney");
    ///
    ///		profile.pre_generate();
    ///
    ///     assert_eq!(profile.save("./tests/samples/sample-00-profile").unwrap(), true);
    /// }
    ///
    pub fn save(&mut self, path: &'static str) -> Result<bool, io::Error> {
        let dsp_json = serde_json::to_string(&self).unwrap();

        // Create the archive file
        let mut file = match File::create(format!("{}.json", &path)) {
            Err(e) => {
                error!("Could not create file {:?}", &path.to_string());
                return Err(e);
            }
            Ok(f) => {
                info!("Successfully exported to {:?}", &path.to_string());
                f
            }
        };

        // Write the json string to file, returns io::Result<()>
        match file.write_all(dsp_json.as_bytes()) {
            Err(e) => {
                error!("Could not write to file {}", &path.to_string());
                return Err(e);
            }
            Ok(_) => {
                info!("Successfully exported to {}", &path.to_string());
            }
        };

        Ok(true)
    }

    /// This function converts the Profile to a serialize JSON string.
    ///
    /// #Example
    ///
    /// ```rust
    /// extern crate test_data_generation;
    ///
    /// use test_data_generation::Profile;
    ///
    /// fn main() {
    /// 	// analyze the dataset
    ///		let mut data_profile =  Profile::new();
    ///
    ///     // analyze the dataset
    ///		data_profile.analyze("OK");
    ///
    ///     println!("{}", data_profile.serialize());
    ///     // {"patterns":{"VC":1},"pattern_total":1,"pattern_keys":["VC"],"pattern_vals":[1],"pattern_percentages":[],"pattern_ranks":[],"sizes":{"2":1},"size_total":1,"size_ranks":[],"processors":4,"facts":[[{"key":"O","prior_key":null,"next_key":"K","pattern_placeholder":"V","starts_with":1,"ends_with":0,"index_offset":0}],[{"key":"K","prior_key":"O","next_key":null,"pattern_placeholder":"C","starts_with":0,"ends_with":1,"index_offset":1}],[],[]]}
    /// }
    ///
    pub fn serialize(&mut self) -> String {
        serde_json::to_string(&self).unwrap()
    }
}

#[macro_use]
pub mod macros;
pub mod configs;
pub mod data_sample_parser;
pub mod engine;
pub mod shared;

// Unit Tests
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn apply_facts() {
        let mut profile = Profile::new();
        let results = PatternDefinition::new().analyze("Word");

        assert_eq!(profile.apply_facts(results.0, results.1).unwrap(), 1);
    }

    #[test]
    fn levenshtein_test() {
        let mut profil = Profile::new();

        assert_eq!(
            profil.levenshtein_distance(&"kitten".to_string(), &"sitting".to_string()),
            3 as usize
        );
    }

    #[test]
    fn realistic_data_test() {
        let mut profil = Profile::new();

        assert_eq!(
            profil.realistic_test(&"kitten".to_string(), &"sitting".to_string()),
            76.92307692307692 as f64
        );
    }

    #[test]
    fn learn_from_entity() {
        let mut profil = Profile::new();
        let sample_data = vec![
            "Smith, John".to_string(),
            "Doe, John".to_string(),
            "Dale, Danny".to_string(),
            "Rickets, Ronney".to_string(),
        ];

        for sample in sample_data.iter().clone() {
            profil.analyze(&sample);
        }

        profil.pre_generate();

        let learning = profil.learn_from_entity(sample_data).unwrap();

        assert_eq!(learning, true);
    }

    #[test]
    fn logging_test() {
        let mut profile = Profile::new();
        profile.reset_analyze();

        assert!(true);
    }

    #[test]
    fn new_profile_with_id() {
        let mut profile = Profile::new_with_id("12345".to_string());
        profile.pre_generate();

        assert_eq!(profile.id.unwrap(), "12345".to_string());
    }

    #[test]
    fn new_profile_from_file() {
        let mut profile = Profile::from_file("./tests/samples/sample-00-profile");
        profile.pre_generate();

        assert!(profile.generate().len() > 0);
    }

    #[test]
    #[should_panic]
    fn new_profile_from_file_bad_data() {
        let mut profile = Profile::from_file("./tests/samples/not-readable");
        profile.pre_generate();

        assert!(profile.generate().len() > 0);
    }

    #[test]
    #[should_panic(expected = "Could not open file \"./tests/samples/bad-path\"")]
    fn new_profile_from_file_bad_path() {
        let mut profile = Profile::from_file("./tests/samples/bad-path");
        profile.pre_generate();

        assert!(profile.generate().len() > 0);
    }

    #[test]
    fn new_profile_from_serialized() {
        let serialized = "{\"patterns\":{\"VC\":1},\"pattern_total\":1,\"pattern_keys\":[\"VC\"],\"pattern_vals\":[1],\"pattern_percentages\":[],\"pattern_ranks\":[],\"sizes\":{\"2\":1},\"size_total\":1,\"size_ranks\":[],\"processors\":4,\"facts\":[[{\"key\":\"O\",\"prior_key\":null,\"next_key\":\"K\",\"pattern_placeholder\":\"V\",\"starts_with\":1,\"ends_with\":0,\"index_offset\":0}],[{\"key\":\"K\",\"prior_key\":\"O\",\"next_key\":null,\"pattern_placeholder\":\"C\",\"starts_with\":0,\"ends_with\":1,\"index_offset\":1}],[],[]]}";
        let mut profile = Profile::from_serialized(&serialized);
        profile.pre_generate();

        assert_eq!(profile.generate(), "OK");
    }

    #[test]
    fn new_profile_new_with() {
        let profile = Profile::new_with_processors(10);

        assert_eq!(profile.processors, 10);
    }

    #[test]
    // ensure Profile is analyzing all the sample data points
    fn profile_analyze() {
        let mut profil = Profile::new();
        profil.analyze("Smith, John");
        profil.analyze("O'Brian, Henny");
        profil.analyze("Dale, Danny");
        profil.analyze("Rickets, Ronney");

        assert_eq!(profil.patterns.len(), 4);
    }

    #[test]
    // ensure Profile is able to find the facts that relate to a pattern
    // NOTE: Dates need work! e.g.: 00/15/0027
    fn profile_generate_from_pattern_date() {
        let mut profil = Profile::new();
        profil.analyze("01/13/2017");
        profil.analyze("11/24/2017");
        profil.analyze("08/05/2017");

        profil.pre_generate();
        let generated = profil.generate_from_pattern("##p##p####".to_string());

        assert_eq!(10, generated.len());
    }

    #[test]
    // ensure Profile is able to find the facts that relate to a pattern
    fn profile_generate_from_pattern_string() {
        let mut profil = Profile::new();
        profil.analyze("First");
        profil.analyze("Next");
        profil.analyze("Last");

        profil.pre_generate();
        let generated = profil.generate_from_pattern("Cvcc".to_string());

        assert_eq!(4, generated.len());
    }

    #[test]
    // ensure Profile is generating correct test data
    fn profile_generate() {
        let mut profil = Profile::new();
        profil.analyze("Smith, John");
        profil.analyze("O'Brian, Henny");
        profil.analyze("Dale, Danny");
        profil.analyze("Rickets, Ronnae");
        profil.analyze("Richard, Richie");
        profil.analyze("Roberts, Blake");
        profil.analyze("Conways, Sephen");

        profil.pre_generate();

        assert!(profil.generate().len() > 10);
    }

    #[test]
    // issue #31
    // ensure Profile doesn't generate a name with a backslash preceding an apostrophe
    fn profile_generate_with_apostrophe() {
        let mut profil = Profile::new();
        profil.analyze("O'Brien");

        profil.pre_generate();
        let generated = profil.generate();

        assert_eq!(generated, "O'Brien");
    }

    #[test]
    // ensure Profile is providing the correct pattern ranks after analyzing the sample data
    fn profile_pregenerate_patterns() {
        let mut profil = Profile::new();
        profil.analyze("Smith, John");
        profil.analyze("O'Brian, Henny");
        profil.analyze("Dale, Danny");
        profil.analyze("Rickets, Ronnae");
        profil.analyze("Richard, Richie");
        profil.analyze("Roberts, Blake");
        profil.analyze("Conways, Sephen");

        profil.pre_generate();
        let test = [
            ("CvccvccpSCvccvv".to_string(), 28.57142857142857 as f64),
            ("CcvccpSCvcc".to_string(), 42.857142857142854 as f64),
            ("CvccvccpSCvccvc".to_string(), 57.14285714285714 as f64),
            ("CvcvcccpSCcvcv".to_string(), 71.42857142857142 as f64),
            ("CvcvpSCvccc".to_string(), 85.7142857142857 as f64),
            ("V@CcvvcpSCvccc".to_string(), 99.99999999999997 as f64),
        ];

        assert_eq!(profil.pattern_ranks, test);
    }

    #[test]
    // ensure Profile is providing the correct pattern ranks after analyzing the sample data
    fn profile_pregenerate_sizes() {
        let mut profil = Profile::new();

        profil.analyze("Smith, Johny"); //12
        profil.analyze("O'Brian, Hen"); //12
        profil.analyze("Dale, Danny"); //11
        profil.analyze("O'Henry, Al"); //11
        profil.analyze("Rickets, Ro"); //11
        profil.analyze("Mr. Wilbers"); //11
        profil.analyze("Po, Al"); //6

        profil.pre_generate();
        let test = [
            (11, 57.14285714285714),
            (12, 85.71428571428571),
            (6, 100 as f64),
        ];

        assert_eq!(profil.size_ranks, test);
    }

    #[test]
    fn save_profile() {
        let mut profile = Profile::new();
        profile.analyze("Smith, John");
        profile.analyze("O'Brian, Henny");
        profile.analyze("Dale, Danny");
        profile.analyze("Rickets, Ronney");

        profile.pre_generate();

        assert_eq!(
            profile.save("./tests/samples/sample-00-profile").unwrap(),
            true
        );
    }

    #[test]
    // ensure a Profile can be exported (to be archived) as JSON
    fn serialize() {
        let mut profil = Profile::new();

        // analyze the dataset
        profil.analyze("OK");

        let serialized = profil.serialize();
        assert_eq!(serialized, "{\"id\":null,\"patterns\":{\"VC\":1},\"pattern_total\":1,\"pattern_keys\":[\"VC\"],\"pattern_vals\":[1],\"pattern_percentages\":[],\"pattern_ranks\":[],\"sizes\":{\"2\":1},\"size_total\":1,\"size_ranks\":[],\"processors\":4,\"facts\":[[{\"key\":\"O\",\"prior_key\":null,\"next_key\":\"K\",\"pattern_placeholder\":\"V\",\"starts_with\":1,\"ends_with\":0,\"index_offset\":0}],[{\"key\":\"K\",\"prior_key\":\"O\",\"next_key\":null,\"pattern_placeholder\":\"C\",\"starts_with\":0,\"ends_with\":1,\"index_offset\":1}],[],[]]}");
    }
}