tessera_ui/component_tree/
node.rs

1use std::{
2    collections::HashMap,
3    ops::{Add, AddAssign},
4    sync::Arc,
5    time::Instant,
6};
7
8use dashmap::DashMap;
9use indextree::NodeId;
10use log::debug;
11use parking_lot::RwLock;
12use rayon::prelude::*;
13use winit::window::CursorIcon;
14
15use crate::{
16    ComputeCommand, ComputeResourceManager, DrawCommand, Px,
17    cursor::CursorEvent,
18    px::{PxPosition, PxSize},
19    renderer::Command,
20};
21
22use super::constraint::{Constraint, DimensionValue};
23
24/// A ComponentNode is a node in the component tree.
25/// It represents all information about a component.
26pub struct ComponentNode {
27    /// Component function's name, for debugging purposes.
28    pub fn_name: String,
29    /// Describes the component in layout.
30    /// None means using default measure policy which places children at the top-left corner
31    /// of the parent node, with no offset.
32    pub measure_fn: Option<Box<MeasureFn>>,
33    /// Describes the state handler for the component.
34    /// This is used to handle state changes.
35    pub state_handler_fn: Option<Box<StateHandlerFn>>,
36}
37
38/// Contains metadata of the component node.
39#[derive(Default)]
40pub struct ComponentNodeMetaData {
41    /// The computed data (size) of the node.
42    /// None if the node is not computed yet.
43    pub computed_data: Option<ComputedData>,
44    /// The node's start position, relative to its parent.
45    /// None if the node is not placed yet.
46    pub rel_position: Option<PxPosition>,
47    /// The node's start position, relative to the root window.
48    /// This will be computed during drawing command's generation.
49    /// None if the node is not drawn yet.
50    pub abs_position: Option<PxPosition>,
51    /// Commands associated with this node.
52    ///
53    /// This stores both draw and compute commands in a unified vector using the
54    /// new `Command` enum. Commands are collected during the measure phase and
55    /// executed during rendering. The order of commands in this vector determines
56    /// their execution order.
57    pub(crate) commands: Vec<Command>,
58}
59
60impl ComponentNodeMetaData {
61    /// Creates a new `ComponentNodeMetaData` with default values.
62    pub fn none() -> Self {
63        Self {
64            computed_data: None,
65            rel_position: None,
66            abs_position: None,
67            commands: Vec::new(),
68        }
69    }
70
71    /// Pushes a draw command to the node's metadata.
72    ///
73    /// Draw commands are responsible for rendering visual content (shapes, text, images).
74    /// This method wraps the command in the unified `Command::Draw` variant and adds it
75    /// to the command queue. Commands are executed in the order they are added.
76    ///
77    /// # Example
78    /// ```rust,ignore
79    /// metadata.push_draw_command(ShapeCommand::Rect {
80    ///     color: [1.0, 0.0, 0.0, 1.0],
81    ///     corner_radius: 8.0,
82    ///     shadow: None,
83    /// });
84    /// ```
85    pub fn push_draw_command(&mut self, command: impl DrawCommand + 'static) {
86        let command = Box::new(command);
87        let command = command as Box<dyn DrawCommand>;
88        let command = Command::Draw(command);
89        self.commands.push(command);
90    }
91
92    /// Pushes a compute command to the node's metadata.
93    ///
94    /// Compute commands perform GPU computation tasks (post-processing effects,
95    /// complex calculations). This method wraps the command in the unified
96    /// `Command::Compute` variant and adds it to the command queue.
97    ///
98    /// # Example
99    /// ```rust,ignore
100    /// metadata.push_compute_command(BlurCommand {
101    ///     radius: 5.0,
102    ///     sigma: 2.0,
103    /// });
104    /// ```
105    pub fn push_compute_command(&mut self, command: impl ComputeCommand + 'static) {
106        let command = Box::new(command);
107        let command = command as Box<dyn ComputeCommand>;
108        let command = Command::Compute(command);
109        self.commands.push(command);
110    }
111}
112
113/// A tree of component nodes, using `indextree::Arena` for storage.
114pub type ComponentNodeTree = indextree::Arena<ComponentNode>;
115/// Contains all component nodes' metadatas, using a thread-safe `DashMap`.
116pub type ComponentNodeMetaDatas = DashMap<NodeId, ComponentNodeMetaData>;
117
118/// Represents errors that can occur during node measurement.
119#[derive(Debug, Clone, PartialEq)]
120pub enum MeasurementError {
121    /// Indicates that the specified node was not found in the component tree.
122    NodeNotFoundInTree,
123    /// Indicates that metadata for the specified node was not found (currently not a primary error source in measure_node).
124    NodeNotFoundInMeta,
125    /// Indicates that the custom measure function (`MeasureFn`) for a node failed.
126    /// Contains a string detailing the failure.
127    MeasureFnFailed(String),
128    /// Indicates that the measurement of a child node failed during a parent's layout calculation (e.g., in `DEFAULT_LAYOUT_DESC`).
129    /// Contains the `NodeId` of the child that failed.
130    ChildMeasurementFailed(NodeId),
131}
132
133/// A `MeasureFn` is a function that takes an input `Constraint` and its children nodes,
134/// finishes placementing inside, and returns its size (`ComputedData`) or an error.
135pub type MeasureFn =
136    dyn Fn(&MeasureInput<'_>) -> Result<ComputedData, MeasurementError> + Send + Sync;
137
138/// Input for the measure function (`MeasureFn`).
139pub struct MeasureInput<'a> {
140    /// The `NodeId` of the current node being measured.
141    pub current_node_id: indextree::NodeId,
142    /// The component tree containing all nodes.
143    pub tree: &'a ComponentNodeTree,
144    /// The effective constraint for this node, merged with its parent's constraint.
145    pub parent_constraint: &'a Constraint,
146    /// The children nodes of the current node.
147    pub children_ids: &'a [indextree::NodeId],
148    /// Metadata for all component nodes, used to access cached data and constraints.
149    pub metadatas: &'a ComponentNodeMetaDatas,
150    /// Compute resources manager
151    pub compute_resource_manager: Arc<RwLock<ComputeResourceManager>>,
152    /// Gpu device
153    pub gpu: &'a wgpu::Device,
154}
155
156/// A `StateHandlerFn` is a function that handles state changes for a component.
157///
158/// The rule of execution order is:
159///
160/// 1. Children's state handlers are executed earlier than parent's.
161/// 2. Newer components' state handlers are executed earlier than older ones.
162///
163/// Acutally, rule 2 includes rule 1, because a newer component is always a child of an older component :)
164pub type StateHandlerFn = dyn Fn(StateHandlerInput) + Send + Sync;
165
166/// Input for the state handler function (`StateHandlerFn`).
167///
168/// Note that you can modify the `cursor_events` and `keyboard_events` vectors
169/// for exmaple block some keyboard events or cursor events to prevent them from propagating
170/// to parent components and older brother components.
171pub struct StateHandlerInput<'a> {
172    /// The `NodeId` of the component node that this state handler is for.
173    /// Usually used to access the component's metadata.
174    pub node_id: indextree::NodeId,
175    /// The size of the component node, computed during the measure stage.
176    pub computed_data: ComputedData,
177    /// The position of the cursor, if available.
178    /// Relative to the root position of the component.
179    pub cursor_position: Option<PxPosition>,
180    /// Cursor events from the event loop, if any.
181    pub cursor_events: &'a mut Vec<CursorEvent>,
182    /// Keyboard events from the event loop, if any.
183    pub keyboard_events: &'a mut Vec<winit::event::KeyEvent>,
184    /// IME events from the event loop, if any.
185    pub ime_events: &'a mut Vec<winit::event::Ime>,
186    /// A context for making requests to the window for the current frame.
187    pub requests: &'a mut WindowRequests,
188}
189
190/// A collection of requests that components can make to the windowing system for the current frame.
191/// This struct's lifecycle is confined to a single `compute` pass.
192#[derive(Default, Debug)]
193pub struct WindowRequests {
194    /// The cursor icon requested by a component. If multiple components request a cursor,
195    /// the last one to make a request in a frame "wins", since it's executed later.
196    pub cursor_icon: CursorIcon,
197    /// An Input Method Editor (IME) request.
198    /// If multiple components request IME, the one from the "newer" component (which is
199    /// processed later in the state handling pass) will overwrite previous requests.
200    pub ime_request: Option<ImeRequest>,
201}
202
203/// A request to the windowing system to open an Input Method Editor (IME).
204/// This is typically used for text input components.
205#[derive(Debug)]
206pub struct ImeRequest {
207    /// The size of the area where the IME is requested.
208    pub size: PxSize,
209    /// The absolute position where the IME should be placed.
210    /// This is set internally by the component tree during the compute pass.
211    pub(crate) position: Option<PxPosition>, // should be setted in tessera node tree compute
212}
213
214impl ImeRequest {
215    pub fn new(size: PxSize) -> Self {
216        Self {
217            size,
218            position: None, // Position will be set during the compute phase
219        }
220    }
221}
222
223/// Measures a single node recursively, returning its size or an error.
224///
225/// See [`measure_nodes`] for concurrent measurement of multiple nodes.
226/// Which is very recommended for most cases. You should only use this function
227/// when your're very sure that you only need to measure a single node.
228pub fn measure_node(
229    node_id: NodeId,
230    parent_constraint: &Constraint,
231    tree: &ComponentNodeTree,
232    component_node_metadatas: &ComponentNodeMetaDatas,
233    compute_resource_manager: Arc<RwLock<ComputeResourceManager>>,
234    gpu: &wgpu::Device,
235) -> Result<ComputedData, MeasurementError> {
236    let node_data_ref = tree
237        .get(node_id)
238        .ok_or(MeasurementError::NodeNotFoundInTree)?;
239    let node_data = node_data_ref.get();
240
241    let children: Vec<_> = node_id.children(tree).collect(); // No .as_ref() needed for &Arena
242    let timer = Instant::now();
243
244    debug!(
245        "Measuring node {} with {} children, parent constraint: {:?}",
246        node_data.fn_name,
247        children.len(),
248        parent_constraint
249    );
250
251    let size = if let Some(measure_fn) = &node_data.measure_fn {
252        measure_fn(&MeasureInput {
253            current_node_id: node_id,
254            tree,
255            parent_constraint,
256            children_ids: &children,
257            metadatas: component_node_metadatas,
258            compute_resource_manager,
259            gpu,
260        })
261    } else {
262        DEFAULT_LAYOUT_DESC(&MeasureInput {
263            current_node_id: node_id,
264            tree,
265            parent_constraint,
266            children_ids: &children,
267            metadatas: component_node_metadatas,
268            compute_resource_manager,
269            gpu,
270        })
271    }?;
272
273    debug!(
274        "Measured node {} in {:?} with size {:?}",
275        node_data.fn_name,
276        timer.elapsed(),
277        size
278    );
279
280    let mut metadata = component_node_metadatas.entry(node_id).or_default();
281    metadata.computed_data = Some(size);
282
283    Ok(size)
284}
285
286/// Places a node at the specified relative position within its parent.
287pub fn place_node(
288    node: indextree::NodeId,
289    rel_position: PxPosition,
290    component_node_metadatas: &ComponentNodeMetaDatas,
291) {
292    component_node_metadatas
293        .entry(node)
294        .or_default()
295        .rel_position = Some(rel_position);
296}
297
298/// A default layout descriptor (`MeasureFn`) that places children at the top-left corner ([0,0])
299/// of the parent node with no offset. Children are measured concurrently using `measure_nodes`.
300pub const DEFAULT_LAYOUT_DESC: &MeasureFn = &|input| {
301    if input.children_ids.is_empty() {
302        // If there are no children, the size depends on the parent_constraint
303        // For Fixed, it's the fixed size. For Wrap/Fill, it's typically 0 if no content.
304        // This part might need refinement based on how min constraints in Wrap/Fill should behave for empty nodes.
305        // For now, returning ZERO, assuming intrinsic size of an empty node is zero before min constraints are applied.
306        // The actual min size enforcement happens when the parent (or this node itself if it has intrinsic min)
307        // considers its own DimensionValue.
308        return Ok(ComputedData::min_from_constraint(input.parent_constraint));
309    }
310
311    let nodes_to_measure: Vec<(NodeId, Constraint)> = input
312        .children_ids
313        .iter()
314        .map(|&child_id| (child_id, *input.parent_constraint)) // Children inherit parent's effective constraint
315        .collect();
316
317    let children_results_map = measure_nodes(
318        nodes_to_measure,
319        input.tree,
320        input.metadatas,
321        input.compute_resource_manager.clone(),
322        input.gpu,
323    );
324
325    let mut aggregate_size = ComputedData::ZERO;
326    let mut first_error: Option<MeasurementError> = None;
327    let mut successful_children_data = Vec::new();
328
329    for &child_id in input.children_ids {
330        match children_results_map.get(&child_id) {
331            Some(Ok(child_size)) => {
332                successful_children_data.push((child_id, *child_size));
333            }
334            Some(Err(e)) => {
335                debug!(
336                    "Child node {child_id:?} measurement failed for parent {:?}: {e:?}",
337                    input.current_node_id
338                );
339                if first_error.is_none() {
340                    first_error = Some(MeasurementError::ChildMeasurementFailed(child_id));
341                }
342            }
343            None => {
344                debug!(
345                    "Child node {child_id:?} was not found in measure_nodes results for parent {:?}",
346                    input.current_node_id
347                );
348                if first_error.is_none() {
349                    first_error = Some(MeasurementError::MeasureFnFailed(format!(
350                        "Result for child {child_id:?} missing"
351                    )));
352                }
353            }
354        }
355    }
356
357    if let Some(error) = first_error {
358        return Err(error);
359    }
360    if successful_children_data.is_empty() && !input.children_ids.is_empty() {
361        // This case should ideally be caught by first_error if all children failed.
362        // If it's reached, it implies some logic issue.
363        return Err(MeasurementError::MeasureFnFailed(
364            "All children failed to measure or results missing in DEFAULT_LAYOUT_DESC".to_string(),
365        ));
366    }
367
368    // For default layout (stacking), the aggregate size is the max of children's sizes.
369    for (child_id, child_size) in successful_children_data {
370        aggregate_size = aggregate_size.max(child_size);
371        place_node(child_id, PxPosition::ZERO, input.metadatas); // All children at [0,0] for simple stacking
372    }
373
374    // The aggregate_size is based on children. Now apply current node's own constraints.
375    // If current node is Fixed, its size is fixed.
376    // If current node is Wrap, its size is aggregate_size (clamped by its own min/max).
377    // If current node is Fill, its size is aggregate_size (clamped by its own min/max, and parent's available space if parent was Fill).
378    // This final clamping/adjustment based on `parent_constraint` should ideally happen
379    // when `ComputedData` is returned from `measure_node` itself, or by the caller of `measure_node`.
380    // For DEFAULT_LAYOUT_DESC, it should return the size required by its children,
381    // and then `measure_node` will finalize it based on `parent_constraint`.
382
383    // Let's refine: DEFAULT_LAYOUT_DESC should calculate the "natural" size based on children.
384    // Then, `measure_node` (or its caller) would apply the `parent_constraint` to this natural size.
385    // However, `measure_node` currently directly returns the result of `DEFAULT_LAYOUT_DESC` or custom `measure_fn`.
386    // So, `DEFAULT_LAYOUT_DESC` itself needs to consider `parent_constraint` for its final size.
387
388    let mut final_width = aggregate_size.width;
389    let mut final_height = aggregate_size.height;
390
391    match input.parent_constraint.width {
392        DimensionValue::Fixed(w) => final_width = w,
393        DimensionValue::Wrap { min, max } => {
394            if let Some(min_w) = min {
395                final_width = final_width.max(min_w);
396            }
397            if let Some(max_w) = max {
398                final_width = final_width.min(max_w);
399            }
400        }
401        DimensionValue::Fill { min, max } => {
402            // Fill behaves like wrap for default layout unless children expand
403            if let Some(min_w) = min {
404                final_width = final_width.max(min_w);
405            }
406            if let Some(max_w) = max {
407                final_width = final_width.min(max_w);
408            }
409            // If parent was Fill, this node would have gotten a Fill constraint too.
410            // The actual "filling" happens because children might be Fill.
411            // If children are not Fill, this node wraps them.
412        }
413    }
414    match input.parent_constraint.height {
415        DimensionValue::Fixed(h) => final_height = h,
416        DimensionValue::Wrap { min, max } => {
417            if let Some(min_h) = min {
418                final_height = final_height.max(min_h);
419            }
420            if let Some(max_h) = max {
421                final_height = final_height.min(max_h);
422            }
423        }
424        DimensionValue::Fill { min, max } => {
425            if let Some(min_h) = min {
426                final_height = final_height.max(min_h);
427            }
428            if let Some(max_h) = max {
429                final_height = final_height.min(max_h);
430            }
431        }
432    }
433    Ok(ComputedData {
434        width: final_width,
435        height: final_height,
436    })
437};
438
439/// Concurrently measures multiple nodes using Rayon for parallelism.
440pub fn measure_nodes(
441    nodes_to_measure: Vec<(NodeId, Constraint)>,
442    tree: &ComponentNodeTree,
443    component_node_metadatas: &ComponentNodeMetaDatas,
444    compute_resource_manager: Arc<RwLock<ComputeResourceManager>>,
445    gpu: &wgpu::Device,
446) -> HashMap<NodeId, Result<ComputedData, MeasurementError>> {
447    if nodes_to_measure.is_empty() {
448        return HashMap::new();
449    }
450    nodes_to_measure
451        .into_par_iter()
452        .map(|(node_id, parent_constraint)| {
453            let result = measure_node(
454                node_id,
455                &parent_constraint,
456                tree,
457                component_node_metadatas,
458                compute_resource_manager.clone(),
459                gpu,
460            );
461            (node_id, result)
462        })
463        .collect::<HashMap<NodeId, Result<ComputedData, MeasurementError>>>()
464}
465
466/// Layout information computed at the measure stage, representing the size of a node.
467#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
468pub struct ComputedData {
469    pub width: Px,
470    pub height: Px,
471}
472
473impl Add for ComputedData {
474    type Output = Self;
475    fn add(self, rhs: Self) -> Self::Output {
476        Self {
477            width: self.width + rhs.width,
478            height: self.height + rhs.height,
479        }
480    }
481}
482
483impl AddAssign for ComputedData {
484    fn add_assign(&mut self, rhs: Self) {
485        *self = *self + rhs;
486    }
487}
488
489impl ComputedData {
490    pub const ZERO: Self = Self {
491        width: Px(0),
492        height: Px(0),
493    };
494
495    /// Calculates a "minimum" size based on a constraint.
496    /// For Fixed, it's the fixed value. For Wrap/Fill, it's their 'min' if Some, else 0.
497    pub fn min_from_constraint(constraint: &Constraint) -> Self {
498        let width = match constraint.width {
499            DimensionValue::Fixed(w) => w,
500            DimensionValue::Wrap { min, .. } => min.unwrap_or(Px(0)),
501            DimensionValue::Fill { min, .. } => min.unwrap_or(Px(0)),
502        };
503        let height = match constraint.height {
504            DimensionValue::Fixed(h) => h,
505            DimensionValue::Wrap { min, .. } => min.unwrap_or(Px(0)),
506            DimensionValue::Fill { min, .. } => min.unwrap_or(Px(0)),
507        };
508        Self { width, height }
509    }
510
511    pub fn min(self, rhs: Self) -> Self {
512        Self {
513            width: self.width.min(rhs.width),
514            height: self.height.min(rhs.height),
515        }
516    }
517
518    pub fn max(self, rhs: Self) -> Self {
519        Self {
520            width: self.width.max(rhs.width),
521            height: self.height.max(rhs.height),
522        }
523    }
524}