Expand description
tessellation is crate for creating polygons from implicit functions or volumes. It uses Manifold Dual Contouring.
§Examples
Create a unit sphere and tessellate it:
use nalgebra as na;
struct UnitSphere {
bbox : tessellation::BoundingBox<f64>
}
impl UnitSphere {
fn new() -> UnitSphere {
UnitSphere {
bbox: tessellation::BoundingBox::new(&na::Point3::new(-1., -1., -1.),
&na::Point3::new( 1., 1., 1.)) }
}
}
impl tessellation::ImplicitFunction<f64> for UnitSphere {
fn bbox(&self) -> &tessellation::BoundingBox<f64> {
&self.bbox
}
fn value(&self, p: &na::Point3<f64>) -> f64 {
return na::Vector3::new(p.x, p.y, p.z).norm() - 1.0;
}
fn normal(&self, p: &na::Point3<f64>) -> na::Vector3<f64> {
return na::Vector3::new(p.x, p.y, p.z).normalize();
}
}
let sphere = UnitSphere::new();
let mut mdc = tessellation::ManifoldDualContouring::new(&sphere, 0.2, 0.1);
let triangles = mdc.tessellate().unwrap();
Structs§
- Bounding
Box - 3D Bounding Box - defined by two diagonally opposing points.
- Manifold
Dual Contouring - Struct containing all the intermediary state for the different stages of tessellation.
- Mesh
- Mesh that will be returned from tessellate.
Traits§
- AsUSize
- Trait which allows to convert Self to usize, since To
is not implemented by f32 and f64. - Implicit
Function - Trait to be implemented by functions that should be tessellated.
- Real
Field - A Combination of alga::general::RealField and na::RealField.