tensorlogic_train/optimizers/
lars.rs1use super::common::{compute_gradient_norm, GradClipMode, Optimizer, OptimizerConfig};
9use crate::{TrainError, TrainResult};
10use scirs2_core::ndarray::{Array, Ix2};
11use std::collections::HashMap;
12
13#[derive(Debug)]
20pub struct LarsOptimizer {
21 config: OptimizerConfig,
22 velocity: HashMap<String, Array<f64, Ix2>>,
24 trust_coef: f64,
26 exclude_bias: bool,
28}
29
30impl LarsOptimizer {
31 pub fn new(config: OptimizerConfig, trust_coef: f64, exclude_bias: bool) -> Self {
38 Self {
39 config,
40 velocity: HashMap::new(),
41 trust_coef,
42 exclude_bias,
43 }
44 }
45
46 fn clip_gradients(&self, gradients: &mut HashMap<String, Array<f64, Ix2>>) {
48 if let Some(clip_value) = self.config.grad_clip {
49 match self.config.grad_clip_mode {
50 GradClipMode::Value => {
51 for grad in gradients.values_mut() {
52 grad.mapv_inplace(|g| g.max(-clip_value).min(clip_value));
53 }
54 }
55 GradClipMode::Norm => {
56 let total_norm = compute_gradient_norm(gradients);
57 if total_norm > clip_value {
58 let scale = clip_value / total_norm;
59 for grad in gradients.values_mut() {
60 grad.mapv_inplace(|g| g * scale);
61 }
62 }
63 }
64 }
65 }
66 }
67
68 fn compute_adaptive_lr(
70 &self,
71 param: &Array<f64, Ix2>,
72 grad: &Array<f64, Ix2>,
73 name: &str,
74 ) -> f64 {
75 if self.exclude_bias && (name.contains("bias") || name.contains("b")) {
76 return self.config.learning_rate;
77 }
78 let param_norm: f64 = param.iter().map(|&p| p * p).sum::<f64>().sqrt();
79 let grad_norm: f64 = grad.iter().map(|&g| g * g).sum::<f64>().sqrt();
80 if param_norm == 0.0 || grad_norm == 0.0 {
81 return self.config.learning_rate;
82 }
83 let local_lr = self.trust_coef * param_norm / grad_norm;
84 self.config.learning_rate * local_lr
85 }
86}
87
88impl Optimizer for LarsOptimizer {
89 fn step(
90 &mut self,
91 parameters: &mut HashMap<String, Array<f64, Ix2>>,
92 gradients: &HashMap<String, Array<f64, Ix2>>,
93 ) -> TrainResult<()> {
94 let mut clipped_gradients = gradients.clone();
95 self.clip_gradients(&mut clipped_gradients);
96 for (name, param) in parameters.iter_mut() {
97 let grad = clipped_gradients.get(name).ok_or_else(|| {
98 TrainError::OptimizerError(format!("Missing gradient for parameter: {}", name))
99 })?;
100 let adaptive_lr = self.compute_adaptive_lr(param, grad, name);
101 let mut effective_grad = grad.clone();
102 if self.config.weight_decay > 0.0 {
103 effective_grad += &(&*param * self.config.weight_decay);
104 }
105 if !self.velocity.contains_key(name) {
106 self.velocity
107 .insert(name.clone(), Array::zeros(param.raw_dim()));
108 }
109 let velocity = self.velocity.get_mut(name).unwrap();
110 velocity.mapv_inplace(|v| self.config.momentum * v);
111 *velocity = &*velocity + &(effective_grad * adaptive_lr);
112 *param = &*param - &*velocity;
113 }
114 Ok(())
115 }
116
117 fn zero_grad(&mut self) {}
118
119 fn get_lr(&self) -> f64 {
120 self.config.learning_rate
121 }
122
123 fn set_lr(&mut self, lr: f64) {
124 self.config.learning_rate = lr;
125 }
126
127 fn state_dict(&self) -> HashMap<String, Vec<f64>> {
128 let mut state = HashMap::new();
129 state.insert("trust_coef".to_string(), vec![self.trust_coef]);
130 state.insert(
131 "exclude_bias".to_string(),
132 vec![if self.exclude_bias { 1.0 } else { 0.0 }],
133 );
134 for (name, velocity) in &self.velocity {
135 state.insert(
136 format!("velocity_{}", name),
137 velocity.iter().copied().collect(),
138 );
139 }
140 state
141 }
142
143 fn load_state_dict(&mut self, state: HashMap<String, Vec<f64>>) {
144 if let Some(trust) = state.get("trust_coef") {
145 self.trust_coef = trust[0];
146 }
147 if let Some(exclude) = state.get("exclude_bias") {
148 self.exclude_bias = exclude[0] > 0.5;
149 }
150 for (key, values) in state {
151 if let Some(name) = key.strip_prefix("velocity_") {
152 if let Some(velocity) = self.velocity.get(name) {
153 let shape = velocity.raw_dim();
154 if let Ok(arr) = Array::from_shape_vec(shape, values) {
155 self.velocity.insert(name.to_string(), arr);
156 }
157 }
158 }
159 }
160 }
161}
162
163#[cfg(test)]
164mod tests {
165 use super::*;
166 use scirs2_core::ndarray::array;
167
168 #[test]
169 fn test_lars_optimizer() {
170 let config = OptimizerConfig {
171 learning_rate: 0.1,
172 momentum: 0.9,
173 weight_decay: 0.0001,
174 ..Default::default()
175 };
176 let mut optimizer = LarsOptimizer::new(config, 0.001, true);
177 let mut params = HashMap::new();
178 params.insert("w".to_string(), array![[1.0, 2.0], [3.0, 4.0]]);
179 let mut grads = HashMap::new();
180 grads.insert("w".to_string(), array![[0.1, 0.1], [0.1, 0.1]]);
181 optimizer.step(&mut params, &grads).unwrap();
182 let w = params.get("w").unwrap();
183 assert!(w[[0, 0]] < 1.0);
184 assert!(w[[1, 1]] < 4.0);
185 let state = optimizer.state_dict();
186 assert!(state.contains_key("trust_coef"));
187 assert!(state.contains_key("exclude_bias"));
188 assert!(state.contains_key("velocity_w"));
189 }
190
191 #[test]
192 fn test_lars_bias_exclusion() {
193 let config = OptimizerConfig {
194 learning_rate: 0.1,
195 momentum: 0.9,
196 ..Default::default()
197 };
198 let mut optimizer = LarsOptimizer::new(config.clone(), 0.001, true);
199 let mut params = HashMap::new();
200 params.insert("weights".to_string(), array![[1.0, 2.0]]);
201 params.insert("bias".to_string(), array![[1.0, 2.0]]);
202 let mut grads = HashMap::new();
203 grads.insert("weights".to_string(), array![[0.1, 0.1]]);
204 grads.insert("bias".to_string(), array![[0.1, 0.1]]);
205 optimizer.step(&mut params, &grads).unwrap();
206 let weights = params.get("weights").unwrap();
207 let bias = params.get("bias").unwrap();
208 assert!(weights[[0, 0]] < 1.0);
209 assert!(bias[[0, 0]] < 1.0);
210 }
211}