tensorlogic_train/optimizers/
radam.rs1use super::common::{compute_gradient_norm, GradClipMode, Optimizer, OptimizerConfig};
10use crate::{TrainError, TrainResult};
11use scirs2_core::ndarray::{Array, Ix2};
12use std::collections::HashMap;
13
14#[derive(Debug)]
22pub struct RAdamOptimizer {
23 config: OptimizerConfig,
24 m: HashMap<String, Array<f64, Ix2>>,
26 v: HashMap<String, Array<f64, Ix2>>,
28 t: usize,
30}
31
32impl RAdamOptimizer {
33 pub fn new(config: OptimizerConfig) -> Self {
35 Self {
36 config,
37 m: HashMap::new(),
38 v: HashMap::new(),
39 t: 0,
40 }
41 }
42
43 fn clip_gradients(&self, gradients: &mut HashMap<String, Array<f64, Ix2>>) {
45 if let Some(clip_value) = self.config.grad_clip {
46 match self.config.grad_clip_mode {
47 GradClipMode::Value => {
48 for grad in gradients.values_mut() {
49 grad.mapv_inplace(|g| g.max(-clip_value).min(clip_value));
50 }
51 }
52 GradClipMode::Norm => {
53 let total_norm = compute_gradient_norm(gradients);
54 if total_norm > clip_value {
55 let scale = clip_value / total_norm;
56 for grad in gradients.values_mut() {
57 grad.mapv_inplace(|g| g * scale);
58 }
59 }
60 }
61 }
62 }
63 }
64
65 fn compute_rectification(&self) -> (bool, f64) {
67 let beta2 = self.config.beta2;
68 let t = self.t as f64;
69 let rho_inf = 2.0 / (1.0 - beta2) - 1.0;
70 let rho_t = rho_inf - 2.0 * t * beta2.powf(t) / (1.0 - beta2.powf(t));
71 if rho_t > 5.0 {
72 let rect = ((rho_t - 4.0) * (rho_t - 2.0) * rho_inf)
73 / ((rho_inf - 4.0) * (rho_inf - 2.0) * rho_t);
74 (true, rect.sqrt())
75 } else {
76 (false, 0.0)
77 }
78 }
79}
80
81impl Optimizer for RAdamOptimizer {
82 fn step(
83 &mut self,
84 parameters: &mut HashMap<String, Array<f64, Ix2>>,
85 gradients: &HashMap<String, Array<f64, Ix2>>,
86 ) -> TrainResult<()> {
87 let mut clipped_gradients = gradients.clone();
88 self.clip_gradients(&mut clipped_gradients);
89 self.t += 1;
90 let lr = self.config.learning_rate;
91 let beta1 = self.config.beta1;
92 let beta2 = self.config.beta2;
93 let eps = self.config.epsilon;
94 let bias_correction1 = 1.0 - beta1.powi(self.t as i32);
95 let (use_adaptive, rect) = self.compute_rectification();
96 for (name, param) in parameters.iter_mut() {
97 let grad = clipped_gradients.get(name).ok_or_else(|| {
98 TrainError::OptimizerError(format!("Missing gradient for parameter: {}", name))
99 })?;
100 if !self.m.contains_key(name) {
101 self.m.insert(name.clone(), Array::zeros(param.raw_dim()));
102 self.v.insert(name.clone(), Array::zeros(param.raw_dim()));
103 }
104 let m = self.m.get_mut(name).unwrap();
105 let v = self.v.get_mut(name).unwrap();
106 *m = &*m * beta1 + &(grad * (1.0 - beta1));
107 let grad_squared = grad.mapv(|g| g * g);
108 *v = &*v * beta2 + &(grad_squared * (1.0 - beta2));
109 let m_hat = &*m / bias_correction1;
110 if use_adaptive {
111 let bias_correction2 = 1.0 - beta2.powi(self.t as i32);
112 let v_hat = &*v / bias_correction2;
113 let update = m_hat / (v_hat.mapv(|val| val.sqrt()) + eps);
114 *param = &*param - &(update * (lr * rect));
115 } else {
116 *param = &*param - &(m_hat * lr);
117 }
118 }
119 Ok(())
120 }
121
122 fn zero_grad(&mut self) {}
123
124 fn get_lr(&self) -> f64 {
125 self.config.learning_rate
126 }
127
128 fn set_lr(&mut self, lr: f64) {
129 self.config.learning_rate = lr;
130 }
131
132 fn state_dict(&self) -> HashMap<String, Vec<f64>> {
133 let mut state = HashMap::new();
134 state.insert("t".to_string(), vec![self.t as f64]);
135 for (name, m_val) in &self.m {
136 state.insert(format!("m_{}", name), m_val.iter().copied().collect());
137 }
138 for (name, v_val) in &self.v {
139 state.insert(format!("v_{}", name), v_val.iter().copied().collect());
140 }
141 state
142 }
143
144 fn load_state_dict(&mut self, state: HashMap<String, Vec<f64>>) {
145 if let Some(t_val) = state.get("t") {
146 self.t = t_val[0] as usize;
147 }
148 for (key, values) in state {
149 if let Some(name) = key.strip_prefix("m_") {
150 if let Some(m_array) = self.m.get(name) {
151 let shape = m_array.raw_dim();
152 if let Ok(arr) = Array::from_shape_vec(shape, values) {
153 self.m.insert(name.to_string(), arr);
154 }
155 }
156 } else if let Some(name) = key.strip_prefix("v_") {
157 if let Some(v_array) = self.v.get(name) {
158 let shape = v_array.raw_dim();
159 if let Ok(arr) = Array::from_shape_vec(shape, values) {
160 self.v.insert(name.to_string(), arr);
161 }
162 }
163 }
164 }
165 }
166}
167
168#[cfg(test)]
169mod tests {
170 use super::*;
171 use scirs2_core::ndarray::array;
172
173 #[test]
174 fn test_radam_optimizer() {
175 let config = OptimizerConfig {
176 learning_rate: 0.001,
177 ..Default::default()
178 };
179 let mut optimizer = RAdamOptimizer::new(config);
180 let mut params = HashMap::new();
181 params.insert("w".to_string(), array![[1.0, 2.0], [3.0, 4.0]]);
182 let mut grads = HashMap::new();
183 grads.insert("w".to_string(), array![[0.1, 0.1], [0.1, 0.1]]);
184 for _ in 0..10 {
185 optimizer.step(&mut params, &grads).unwrap();
186 }
187 let w = params.get("w").unwrap();
188 assert!(w[[0, 0]] < 1.0);
189 assert!(w[[0, 1]] < 2.0);
190 let state = optimizer.state_dict();
191 assert!(state.contains_key("t"));
192 assert!(state.contains_key("m_w"));
193 assert!(state.contains_key("v_w"));
194 }
195}