tensorlogic_train/optimizers/
nadam.rs1use super::common::{compute_gradient_norm, GradClipMode, Optimizer, OptimizerConfig};
9use crate::{TrainError, TrainResult};
10use scirs2_core::ndarray::{Array, Ix2};
11use std::collections::HashMap;
12
13#[derive(Debug)]
15pub struct NAdamOptimizer {
16 config: OptimizerConfig,
17 m: HashMap<String, Array<f64, Ix2>>,
19 v: HashMap<String, Array<f64, Ix2>>,
21 t: usize,
23}
24
25impl NAdamOptimizer {
26 pub fn new(config: OptimizerConfig) -> Self {
28 Self {
29 config,
30 m: HashMap::new(),
31 v: HashMap::new(),
32 t: 0,
33 }
34 }
35
36 fn clip_gradients(&self, gradients: &mut HashMap<String, Array<f64, Ix2>>) {
38 if let Some(clip_value) = self.config.grad_clip {
39 match self.config.grad_clip_mode {
40 GradClipMode::Value => {
41 for grad in gradients.values_mut() {
42 grad.mapv_inplace(|g| g.max(-clip_value).min(clip_value));
43 }
44 }
45 GradClipMode::Norm => {
46 let total_norm = compute_gradient_norm(gradients);
47 if total_norm > clip_value {
48 let scale = clip_value / total_norm;
49 for grad in gradients.values_mut() {
50 grad.mapv_inplace(|g| g * scale);
51 }
52 }
53 }
54 }
55 }
56 }
57}
58
59impl Optimizer for NAdamOptimizer {
60 fn step(
61 &mut self,
62 parameters: &mut HashMap<String, Array<f64, Ix2>>,
63 gradients: &HashMap<String, Array<f64, Ix2>>,
64 ) -> TrainResult<()> {
65 let mut clipped_gradients = gradients.clone();
66 self.clip_gradients(&mut clipped_gradients);
67 self.t += 1;
68 let lr = self.config.learning_rate;
69 let beta1 = self.config.beta1;
70 let beta2 = self.config.beta2;
71 let eps = self.config.epsilon;
72 let mu_t = beta1 * (1.0 - 0.5 * 0.96_f64.powi(self.t as i32));
73 let mu_t_next = beta1 * (1.0 - 0.5 * 0.96_f64.powi((self.t + 1) as i32));
74 for (name, param) in parameters.iter_mut() {
75 let grad = clipped_gradients.get(name).ok_or_else(|| {
76 TrainError::OptimizerError(format!("Missing gradient for parameter: {}", name))
77 })?;
78 if !self.m.contains_key(name) {
79 self.m.insert(name.clone(), Array::zeros(param.raw_dim()));
80 self.v.insert(name.clone(), Array::zeros(param.raw_dim()));
81 }
82 let m = self.m.get_mut(name).unwrap();
83 let v = self.v.get_mut(name).unwrap();
84 *m = &*m * beta1 + &(grad * (1.0 - beta1));
85 let grad_squared = grad.mapv(|g| g * g);
86 *v = &*v * beta2 + &(grad_squared * (1.0 - beta2));
87 let m_hat = &*m / (1.0 - beta1.powi(self.t as i32));
88 let v_hat = &*v / (1.0 - beta2.powi(self.t as i32));
89 let m_bar =
90 &m_hat * mu_t_next / (1.0 - mu_t_next) + &(grad * (1.0 - mu_t) / (1.0 - mu_t_next));
91 let update = m_bar / &v_hat.mapv(|v_val| v_val.sqrt() + eps);
92 *param = &*param - &(update * lr);
93 }
94 Ok(())
95 }
96
97 fn zero_grad(&mut self) {}
98
99 fn get_lr(&self) -> f64 {
100 self.config.learning_rate
101 }
102
103 fn set_lr(&mut self, lr: f64) {
104 self.config.learning_rate = lr;
105 }
106
107 fn state_dict(&self) -> HashMap<String, Vec<f64>> {
108 let mut state = HashMap::new();
109 state.insert("t".to_string(), vec![self.t as f64]);
110 for (name, m_val) in &self.m {
111 state.insert(format!("m_{}", name), m_val.iter().copied().collect());
112 }
113 for (name, v_val) in &self.v {
114 state.insert(format!("v_{}", name), v_val.iter().copied().collect());
115 }
116 state
117 }
118
119 fn load_state_dict(&mut self, state: HashMap<String, Vec<f64>>) {
120 if let Some(t_vals) = state.get("t") {
121 self.t = t_vals[0] as usize;
122 }
123 for (key, values) in state {
124 if let Some(name) = key.strip_prefix("m_") {
125 if let Some(m) = self.m.get(name) {
126 let shape = m.raw_dim();
127 if let Ok(arr) = Array::from_shape_vec(shape, values) {
128 self.m.insert(name.to_string(), arr);
129 }
130 }
131 } else if let Some(name) = key.strip_prefix("v_") {
132 if let Some(v) = self.v.get(name) {
133 let shape = v.raw_dim();
134 if let Ok(arr) = Array::from_shape_vec(shape, values) {
135 self.v.insert(name.to_string(), arr);
136 }
137 }
138 }
139 }
140 }
141}
142
143#[cfg(test)]
144mod tests {
145 use super::*;
146 use scirs2_core::ndarray::array;
147
148 #[test]
149 fn test_nadam_optimizer() {
150 let config = OptimizerConfig {
151 learning_rate: 0.002,
152 ..Default::default()
153 };
154 let mut optimizer = NAdamOptimizer::new(config);
155 let mut params = HashMap::new();
156 params.insert("w".to_string(), array![[1.0, 2.0]]);
157 let mut grads = HashMap::new();
158 grads.insert("w".to_string(), array![[0.1, 0.1]]);
159 optimizer.step(&mut params, &grads).unwrap();
160 let w = params.get("w").unwrap();
161 assert!(w[[0, 0]] < 1.0);
162 }
163}