tensorlogic_train/optimizers/
adagrad.rs1use super::common::{compute_gradient_norm, GradClipMode, Optimizer, OptimizerConfig};
10use crate::{TrainError, TrainResult};
11use scirs2_core::ndarray::{Array, Ix2};
12use std::collections::HashMap;
13
14#[derive(Debug)]
16pub struct AdagradOptimizer {
17 config: OptimizerConfig,
18 sum_squared_grads: HashMap<String, Array<f64, Ix2>>,
20}
21
22impl AdagradOptimizer {
23 pub fn new(config: OptimizerConfig) -> Self {
25 Self {
26 config,
27 sum_squared_grads: HashMap::new(),
28 }
29 }
30
31 fn clip_gradients(&self, gradients: &mut HashMap<String, Array<f64, Ix2>>) {
33 if let Some(clip_value) = self.config.grad_clip {
34 match self.config.grad_clip_mode {
35 GradClipMode::Value => {
36 for grad in gradients.values_mut() {
37 grad.mapv_inplace(|g| g.max(-clip_value).min(clip_value));
38 }
39 }
40 GradClipMode::Norm => {
41 let total_norm = compute_gradient_norm(gradients);
42 if total_norm > clip_value {
43 let scale = clip_value / total_norm;
44 for grad in gradients.values_mut() {
45 grad.mapv_inplace(|g| g * scale);
46 }
47 }
48 }
49 }
50 }
51 }
52}
53
54impl Optimizer for AdagradOptimizer {
55 fn step(
56 &mut self,
57 parameters: &mut HashMap<String, Array<f64, Ix2>>,
58 gradients: &HashMap<String, Array<f64, Ix2>>,
59 ) -> TrainResult<()> {
60 let mut clipped_gradients = gradients.clone();
61 self.clip_gradients(&mut clipped_gradients);
62 let lr = self.config.learning_rate;
63 let eps = self.config.epsilon;
64 for (name, param) in parameters.iter_mut() {
65 let grad = clipped_gradients.get(name).ok_or_else(|| {
66 TrainError::OptimizerError(format!("Missing gradient for parameter: {}", name))
67 })?;
68 if !self.sum_squared_grads.contains_key(name) {
69 self.sum_squared_grads
70 .insert(name.clone(), Array::zeros(param.raw_dim()));
71 }
72 let sum_sq = self.sum_squared_grads.get_mut(name).unwrap();
73 let grad_squared = grad.mapv(|g| g * g);
74 *sum_sq = &*sum_sq + &grad_squared;
75 let update = grad / &sum_sq.mapv(|s| s.sqrt() + eps);
76 *param = &*param - &(update * lr);
77 }
78 Ok(())
79 }
80
81 fn zero_grad(&mut self) {}
82
83 fn get_lr(&self) -> f64 {
84 self.config.learning_rate
85 }
86
87 fn set_lr(&mut self, lr: f64) {
88 self.config.learning_rate = lr;
89 }
90
91 fn state_dict(&self) -> HashMap<String, Vec<f64>> {
92 let mut state = HashMap::new();
93 for (name, sum_sq) in &self.sum_squared_grads {
94 state.insert(
95 format!("sum_squared_grads_{}", name),
96 sum_sq.iter().copied().collect(),
97 );
98 }
99 state
100 }
101
102 fn load_state_dict(&mut self, state: HashMap<String, Vec<f64>>) {
103 for (key, values) in state {
104 if let Some(name) = key.strip_prefix("sum_squared_grads_") {
105 if let Some(sum_sq) = self.sum_squared_grads.get(name) {
106 let shape = sum_sq.raw_dim();
107 if let Ok(arr) = Array::from_shape_vec(shape, values) {
108 self.sum_squared_grads.insert(name.to_string(), arr);
109 }
110 }
111 }
112 }
113 }
114}
115
116#[cfg(test)]
117mod tests {
118 use super::*;
119 use scirs2_core::ndarray::array;
120
121 #[test]
122 fn test_adagrad_optimizer() {
123 let config = OptimizerConfig {
124 learning_rate: 0.1,
125 ..Default::default()
126 };
127 let mut optimizer = AdagradOptimizer::new(config);
128 let mut params = HashMap::new();
129 params.insert("w".to_string(), array![[1.0, 2.0]]);
130 let mut grads = HashMap::new();
131 grads.insert("w".to_string(), array![[0.1, 0.2]]);
132 optimizer.step(&mut params, &grads).unwrap();
133 let w = params.get("w").unwrap();
134 assert!(w[[0, 0]] < 1.0);
135 assert!(w[[0, 1]] < 2.0);
136 }
137}