pub fn kernel_target_alignment(
kernel_matrix: &[Vec<f64>],
labels: &[f64],
) -> Result<f64>Expand description
Compute kernel-target alignment (KTA) between a kernel matrix and target labels.
KTA measures how well a kernel matrix aligns with the ideal kernel matrix derived from target labels. Higher values indicate better alignment.
§Arguments
kernel_matrix- The kernel matrix Klabels- Binary labels (+1 or -1) for each sample
§Returns
- Alignment score in range [-1, 1]
§Examples
use tensorlogic_sklears_kernels::kernel_utils::kernel_target_alignment;
let K = vec![
vec![1.0, 0.8, 0.2],
vec![0.8, 1.0, 0.3],
vec![0.2, 0.3, 1.0],
];
let labels = vec![1.0, 1.0, -1.0];
let alignment = kernel_target_alignment(&K, &labels).unwrap();
// High alignment means kernel separates classes well